Deaton Farm Stream Restoration Randolph County, North Carolina Annual Monitoring Report

Monitoring Year: 2005

Monitoring Year: 2005 Measurement Year 3 Construction Date: 2003 Project Design by HSMM, Raleigh, NC NCEEP Project Number: 110

February 2006

DEATON FARM STREAM RESTORATION 2005 MONITORING REPORT

CONDUCTED FOR THE NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES

TABLE OF CONTENTS

II	Executive Summary/Project Abstract	. 3
II l	Project Background	. 3
A.	Location and Setting	. 3
В.	Mitigation Structure and Objectives	. 3
C.	Project History and Background	. 7
III	Project Condition and Monitoring Results	. 9
A.	Vegetation Assessment	. 9
	1. Soil Data	. 9
2	2. Vegetation Problem Areas	. 9
3	3. Stem Counts	. 9
В	Stream Assessment	10
	1. Morphometric Criteria	10
2	2. Hydrologic Criteria	11
3	3. Bank Stability Assessments	11
4	4. Problem Areas	11
C.	Wetland Assessment	12
	LIST OF FIGURES	
Figur	e 1 Vicinity Map	. 4
	e 2 Monitoring Plan View	
8*		
	LIST OF TABLES	
	LIST OF TABLES	
	I. Project Structure and Objectives	
	II. Project Activity and Reporting History	
	III. Project Contact Table	
	V. Project Background Table	
	V. Preliminary Soil Data	
	VII. Stem Counts	
	X. Stream Problem Areas	
	XI. Categorical Stream Feature Visual Stability Assessment	
	XII. Baseline Morphology and Hydraulic Summary	
Table	XIII. Morphology and Hydraulic Monitoring Summary	15

APPENDICIES

Appendix A **Vegetation Raw Data** Vegetation Survey Data Tables A-1 A-2 Vegetation Monitoring Plot Photos Appendix B Geomorphologic Raw Data Exhibit – Problem Areas Plan View - Not Included (No problem areas) B-1 B-2 Representative Stream Problem Area Photos – Not Included - (No problem areas) B-3 **Stream Photo-station Photos** B-4 Table B.1. Qualitative Visual Stability Assessment B-5 Cross section Plots and Raw Data Tables B-6 Longitudinal Plots and Raw Data Tables B-7 Pebble Counts and Raw Data Tables B-8 USGS Surrogate Stream Gauge Plot/Extract

I Executive Summary/Project Abstract

The Deaton Farm Stream Restoration Site includes 5,050 linear feet along four unnamed tributaries to Fork Creek near Coleridge in Randolph County, North Carolina. The site was constructed in January 2003 by the North Carolina Department of Transportation (NCDOT). The following report is the 2005 Annual Monitoring Report: Year 3 for the two main tributaries: Northern and Southern Tributary. The two smaller tributaries were not surveyed.

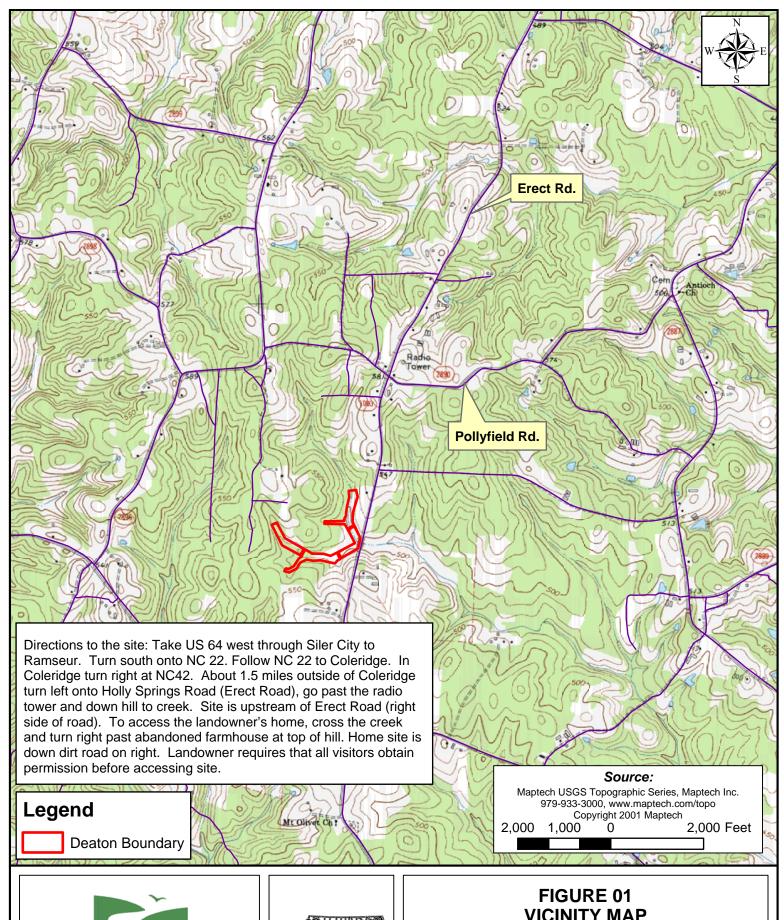
New cross section and longitudinal benchmarks were established. Therefore it is difficult to compare cross section data to previous years. However, the project appears to be doing very well and no problem areas were observed. The vegetation has done well in the floodplain and along the banks. Many sections of the Southern Tributary were dry or contained only standing water in pools during the field survey in late fall.

The vegetation monitoring of the site revealed an average tree density of 357 trees per acre. This average is above the minimum criteria of at least 320 stems per acre after 3 years. Seedlings from natural recruitment are very low. No additional plantings are recommended at this time, but close monitoring of future survivorship may indicate additional plantings.

II Project Background

A. Location and Setting

The Deaton Farm Stream Restoration Site includes 5,050 linear feet and a conservation easement of 13.7 acres along four unnamed tributaries to Fork Creek, in Randolph County. The site is located between Asheboro and Coleridge on the west side of Erect Road (SR 1003) in the southeastern portion of Randolph County, North Carolina (**Figure 1**).

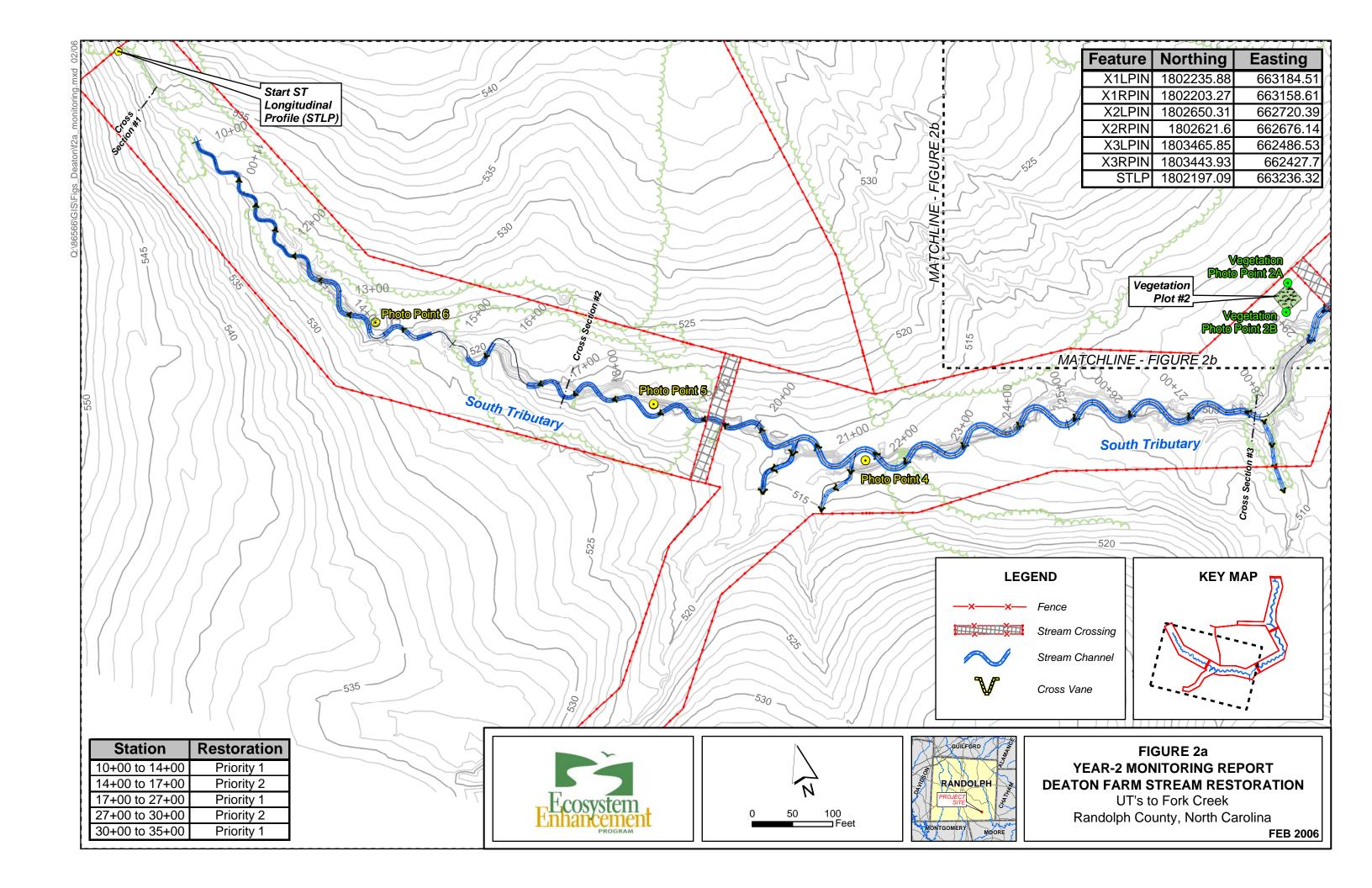

Directions to the site: Take US 64 west through Siler City to Ramseur. Turn south onto NC 22. Follow NC 22 to Coleridge. In Coleridge turn right at NC42. About 1.5 miles outside of Coleridge turn left onto Holly Springs Road (Erect Road), go past the radio tower and down hill to creek. Site is upstream of Erect Road (right side of road). To access the landowner's home, cross the creek and turn right past abandoned farmhouse at top of hill. Home site is down dirt road on right. Landowner requires that all visitors obtain permission before accessing site.

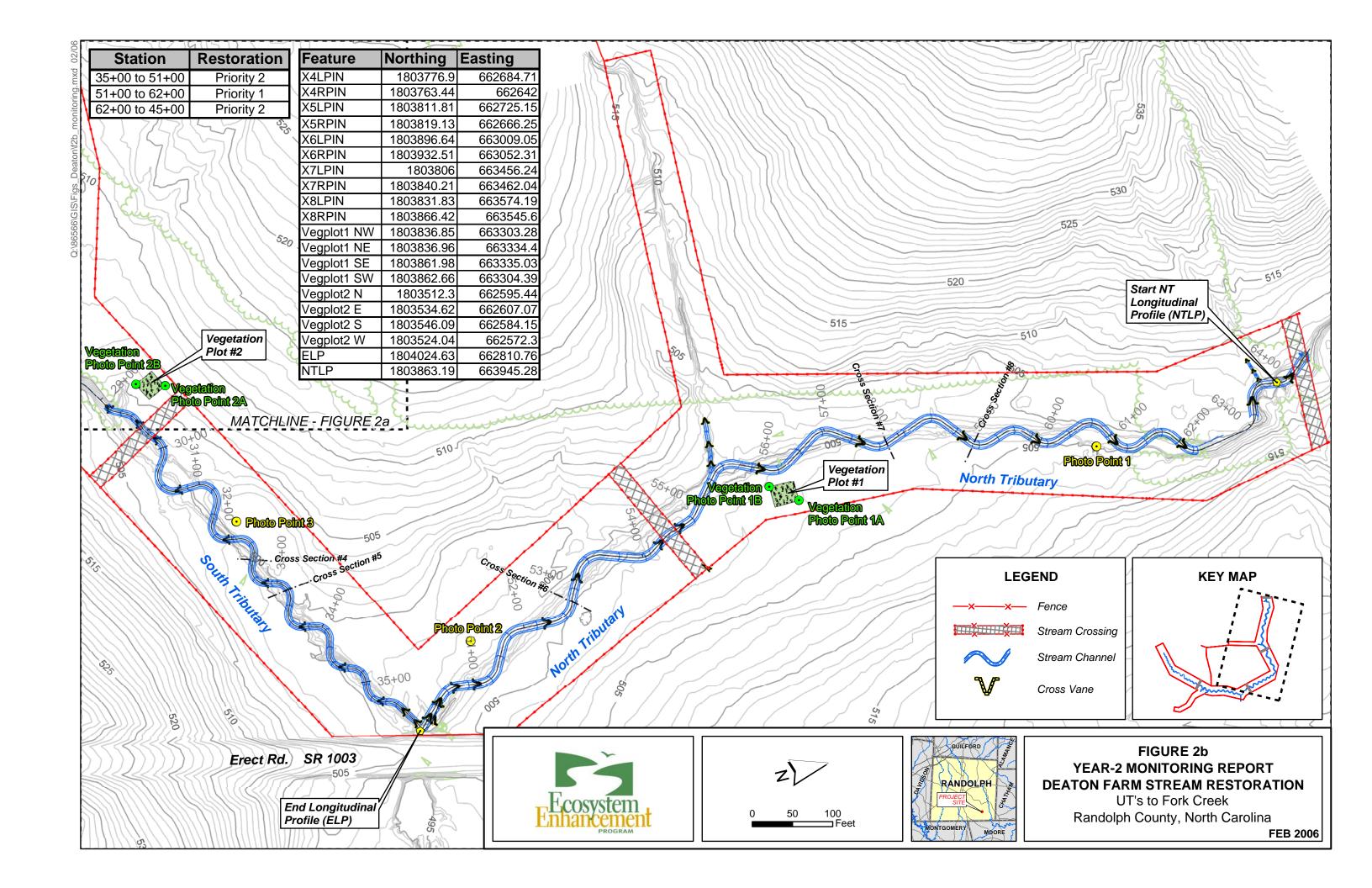
B. Mitigation Structure and Objectives

Successful stream mitigation is demonstrated by a stable channel that neither aggrades nor degrades over time. It is also demonstrated by reduced erosion rates, the permanent establishment of native vegetation, and bed features consistent with the design stream type. Vegetation survival is based on federal guidelines denoting success criteria for wetland mitigation.

Approximately 4,100 linear feet were surveyed along the two main tributaries, identified as the northern unnamed tributary (UT) and the southern UT in this report (**Figure 2**). Several smaller

Deaton Farm Stream Restoration NCEEP Project Number: 110 Earth Tech 2005 Monitoring Report Year 3 of 5





VICINITY MAP

Deaton Stream Mitigation Site Randolph County, North Carolina

Map Produced: February 2006

tributaries entering both the main tributaries were not surveyed as part of this assessment. The unnamed tributaries to Fork Creek are on an active cattle farm. Priority Level I and II restorations were completed along both tributaries at the site. Construction involved establishing a new channel along each reach. Cross vanes were installed for grade control and bank stability. The adjacent streambanks were re-sloped to reduce overall erosion. It also included the installation of native vegetation and livestock management practices, including a 50-foot riparian buffer and atgrade stream crossings in several locations.

Monitoring activities in 2005 reflect the third formal year of monitoring following the restoration efforts. Included in this report are analyses on stability (primarily the longitudinal profile and cross sections) and site photographs. Earth Tech conducted monitoring activities in 2005.

According to the stream mitigation plan, the following objectives were proposed:

- Protection of the streams, including the smaller tributaries, and riparian zones via 50-foot conservation easements;
- Protection of the riparian zones vegetation from grazing by fencing livestock out of the easement area and installing watering tanks, stream crossings, etc.;
- Enhancement of overall stability by establishing the correct width/depth ratio, reducing entrenchment, sloping banks, and planting woody vegetation along the northern UT and southern UT tributaries to Fork Creek;
- Installation of rock cross vanes along eroding sections of the creek to reduce erosion and provide habitat diversity;
- Enhancement of instream habitat by constructing a series of cross vanes;
- Establishment of the proper width/depth by narrowing the channel and establishing a floodplain; and
- Planting of native trees, shrubs, and ground cover that will help to stabilize the stream banks, establish shade, and provide wildlife cover and food.

	Table I. Project Structure and Objectives Deaton Farm Stream Restoration Site/Number 110												
Project Segment	Mitigation Type	Approach	Linear Footage	Stationing	Comment								
Reach I (Southern Tributary)	R	PI/ PII	2687 ft	00+00 - 26+87	Level Priority I and Priority II restoration was performed on both streams								
Reach II (Northern Tributary)	R	PI/ PII	1366 ft	00+00 - 13+66	Level Priority I and Priority II restoration was performed on both streams								

R=Restoration PI=Priority I PII=Priority II

	Table II. Project Activity and Reporting History Deaton Farm Stream Restoration Site/Number 110									
Deaton Farm Stream Re Activity or Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery							
Restoration Plan	N/A	N/A	N/A							
Final Design	N/A	N/A	July 2002							
Construction	N/A	N/A	January 2003							
Temporary S&E mix applied	N/A	N/A	N/A							
Containerized and B&B plantings for each reach/segment	N/A	N/A	February 2003							
Mitigation Plan/As-built (Year 0 Monitoring – baseline)	N/A	N/A	N/A							
Year 1 Monitoring (Vegetation)	N/A	N/A	June 2003							
Year 1 Monitoring (Channel)	N/A	N/A	September 2003							
Year 2 Monitoring(Vegetation)	N/A	N/A	July 2004							
Year 2 Monitoring (Channel)	N/A	N/A	August 2004							
Year 3 Monitoring(Vegetation)	N/A	Nov. 2, 2005	December 2005							
Year 3 Monitoring (Channel)	N/A	Nov.15, 2005	December 2005							
Year 4 Monitoring	Fall 2006	Fall 2006								
Year 5 Monitoring	Fall 2007	Fall 2007								

N/A – Historical project documents necessary to provide this data were unavailable at the time of this report submission.

C. Project History and Background

The project background information was extracted from Annual Monitoring Reports dated December 2003 and October 2004, prepared by the NCDOT, Office of Natural Environment and Roadside Environmental Unit. The Deaton Mitigation Site consists of priority I and II stream restoration of approximately 5,050 linear feet along the unnamed tributaries to Fork Creek. Approximately 4,100 linear feet of channel were surveyed along the two main tributaries. The site is an active cattle farm and formerly cattle had access to the stream channels causing damage to the riparian zone, soil erosion and channel degradation.

Table III. Project Contact Table Deaton Farm Stream Restoration Site/Number 110							
Designer	HSMM						
	1305 Navaho Drive, Suite 303						
	Raleigh, NC 27609						
Primary project design POC	H. R. Currin						
Construction Contractor	NCDOT						
Construction Contractor POC							
Planting Contractor	N/A						
Planting Contractor POC							
Seeding Contractor	N/A						
Planting Contractor POC							
Seed Mix Sources	N/A						
Nursery Stock Suppliers	N/A						

Table III. Project Deaton Farm Stream Rest	
Monitoring Performers (2003 and 2004)	Mulkey Engineers & Consultants
	6750 Tryon Road
	Cary, North Carolina 27511
Monitoring Performers (2005)	Earth Tech
	701 Corporate Center Drive, Suite 475
	Raleigh, NC 27607
Stream Monitoring POC	Ron Johnson
	(919) 854-6210
Vegetation Monitoring POC	Ron Johnson
	(919) 854-6210
Wetland Monitoring POC	No Wetlands at site

N/A – Historical project documents necessary to provide this data were unavailable at the time of this report submission.

Table IV. Project B Deaton Farm Stream Resto	
Project County	Randolph
Drainage Area	
Southern Tributary	0.15 square miles
Northern Tributary	0.35 square miles
Drainage impervious cover estimate (%)	
Northern unnamed tributary	< 1%
Southern unnamed tributary	< 1%
Stream order	
Northern unnamed tributary	1 st Order
Southern unnamed tributary	1 st Order
Physiographic region	Piedmont
Ecoregion	Carolina Slate Belt (45c)
Rosgen classification of As-built	C4
Dominant soil types	Callison and Lignum
Reference site ID	N/A
USGS HUC for Project	USGS Unit: 03030003 (Deep River)
NCDWQ sub-basin for project	03-06-09
NCDWQ classification for project and reference	C (Fork Creek and unnamed tributaries)
Any portion of project segment upstream of a	No
303d listed segment	
Reasons for 303d listing or stressor	N/A
Percent of project easement fenced	100

III Project Condition and Monitoring Results

A. Vegetation Assessment

1. Soil Data

	Table V. Preliminary Soil Data												
Deaton Farm Stream Restoration Site/Number 110													
Series	Max Depth (in.)	% Clay on Surface	K	T	OM %								
Callison	40	4 – 20	.43	3	0.5 - 2								
Lignum	60	10 - 25	.3	4	0.5 - 2								

2. Vegetation Problem Areas

No vegetation problem areas were identified at this site during this monitoring period. Therefore, Table VI is not applicable for this monitoring period.

3. Stem Counts

Using the established plots previously monitored, two plots were surveyed November 2, 2005 for the 2005-monitoring season. No reference area was studied; therefore no comparisons could be made to reference conditions.

Tree species planted include green ash (*Fraxinus pennsylvanica*), willow oak (*Quercus phellos*), water oak (*Quercus nigra*), laurel oak (*Quercus laurifolia*), and southern red oak (*Quercus falcata*) (**Table VII**). No shrubs were planted at this site.

	Table VII. Stem Counts Deaton Farm Stream Restoration Site/Number 110												
	Species	Plots (50 FT X 50 FT X 50 Planting FT) *Initial Planting Year 1 Year 2 3 Survive 3 Year 2 3 Year 4 Year 4 Year 5 Year 5 Year 6 Year 7 Year 7 Year 8 Year 8 Year 9 Year 9 Year 9 Year 9 Year 1 Year 1 Year 1 Year 1 Year 1 Year 1 Year 2 Year 3 Year 1 Year 1 Year 1 Year 2 Year 3 Year 3 Year 1 Year 2 Year 3 Year 1 Year 1 Year 1 Year 2 Year 3 Year 3 Year 1 Year											
Scientific Name	Common Name	Plot Plot Total 1 2 Stems											
Fraxinus pennsylvanica	Green ash	5	8	13		11	15	13					
Quercus phellos	Willow oak	13	1	14		22	16	14					
Quercus nigra	Water oak	0	1	1		6	2	1					
Quercus laurifolia	Laurel oak	4	0	4		8	3	4					
Quercus falcata	Southern red oak	0	9	9		1	1	9					
	Total Trees	22	19	41	94	48	37	41	44%				

Notes: Percent survival calculated for current year based on initial count at planting.

The average plot density is 357 stems per acre and the most dominant species are green ash and willow oak. Survival has stabilized after the Year 1 monitoring. It is noted that the estimated stems per acre have increased from previously reported due to the way Earth Tech has calculated density. Previous density calculations were based on the assumption that 680 stems per acre were planted changes were reported as a percent reduction. The current estimated is based on the plot size (2,500 square feet) and shows that an estimated 819 stems per acre were initially planted (based on reported stems counted per plot). Photographs were taken at all permanent photo points (**Appendix A**). The photographs show that vegetation is generally growing well and is a good combination of woody and herbaceous growth.

Success criteria for vegetation state that there must be a minimum of 320 stems per acre living after three years and 260 stems per acre living after five years. This site appears to meet the established success criteria after three years.

The herbaceous vegetation is moderately dense in both plots with approximately 90 percent coverage in plot 1 and 85 percent coverage in plot 2. Species include: beaked panicgrass (*Panicum anceps*), common rush (*Juncus effusus*), dog fennel (*Eupatorium capillifolium*), pasture thistle (*Cirsium pumilum*), Pennsylvania smartweed (*Polygonum pensylvanicum*), sedge (*Carex* sp.), sharpwing monkeyflower (*Mimulus alatus*), and tall pasture fescue (*Lolium arundinaceum*).

B Stream Assessment

Earth Tech personnel performed a site visit at Deaton Farm mitigation site on November 7 through 15, 2005. During the field visit notes were made regarding the condition of the stream restoration project. Overall, the project is doing well having only a few areas with minor erosion or minimal vegetation.

Photographs were taken at all permanent photo points. Banks are stable with no unusual bank erosion.

1. Morphometric Criteria

The assessment included the survey of eight total cross sections associated with both tributaries, as well as the longitudinal profiles. Cross section locations established for Monitoring Year 1 and 2 were not properly benchmarked and flagged. Many were not located due to the dense vegetation. While at least one wooden stake was found for each cross section location, no permanent metal pins identifying the end of each cross section were located. During this survey each end of the longitudinal profile and both the left and right stream banks of each cross section were set with a rebar benchmark. The location of the rebar benchmark is also marked with wooden survey stakes. Cross sections are located at the following locations.

- Cross Section #1. Southern UT, Station 0+69, midpoint of pool
- Cross Section #2. Southern UT, Station 8+63, midpoint of riffle
- Cross Section #3. Southern UT, Station 19+00, midpoint of riffle
- Cross Section #4. Southern UT, Station 23+36, midpoint of riffle
- Cross Section #5. Southern UT, Station 24+17, midpoint of pool
- Cross Section #6. Northern UT, Station 4+51, midpoint of pool
- Cross Section #7. Northern UT. Station 5+76, midpoint of riffle
- Cross Section #8. Northern UT, Station 10+91, midpoint of riffle

All of the cross section locations appeared stable with little or no active bank erosion. Survey data collected during future monitoring periods may vary depending on actual location of rod placement and alignment; however, from this point forward this information should remain similar in overall appearance.

When comparing morphological parameters with previous year's data many of the cross sections exhibit significant differences. These differences appear to be due to the relocation of the cross sections as well as determination of a bankfull elevation higher then what may have been previously identified.

2. Hydrologic Criteria

Monitoring requirements state that at least two bankfull events must be documented through the five-year monitoring period. No surface water gauges exist on Fork Creek or its tributaries. A review of known U.S. Geological Survey (USGS) surface water gauges identified three gauges within 21 miles (32 kilometers) of the mitigation site: one on the Rocky River near Crutchfield Crossroads, one on the Deep River near Ramseur, and one on Tick Creek approximately 5 miles southeast of Siler City. The gauge station on the Deep River near Ramseur is located closest to the project site; however, its large 349 square mile drainage area likely does not accurately reflect the hydrology and precipitation of the Deaton Site.

The Rocky River gauge was utilized for this report because it is the smaller of the remaining two gages. The Rocky River gauge has a 7.42 square-miles drainage area as compared to the 15.5 square-miles drainage area associated with Tick Creek. The restoration site has a drainage area of 0.6 square-miles. The Rocky River gauge is situated in USGS Hydrologic Unit 03030003 and has a datum of 620 feet above sea level NGVD29. Based on the drainage area associated with the gauge, the correlated bankfull discharge according to the NC Rural Piedmont Regional Curves is between 342 and 413 cubic feet per second (cfs). Based on the USGS data, two bankfull events may have occurred during 2005, one in January and one in March. The March 2005 event approached 400 cfs, while the January 2005 event is almost 500 cfs. The event discharge amount was not available. The USGS graph depicting these peak flows is presented in **Appendix C**. Also, according to the 2004 monitoring report, two bankfull events may have also occurred during 2003.

3. Bank Stability Assessments

Bank stability and sediment transport are not required to be monitored for this former NCDOT restoration site. Therefore Table IX BEHI and Sediment Export Estimates are not applicable.

4. Problem Areas

During the 2005 monitoring, two small problem areas were noted, both involving headcuts in the Southern Tributary. One of these was noted during the 2004 monitoring and the other was a new observation. Because of the small drainage area there was very little water in the Southern Tributary during this monitoring period. This is probably helping to limit further headcutting. Vegetation is filling in bare areas along the banks, stabilizing these areas and preventing erosion of the channel. Because of the small contributing drainage area and the absence of water or active erosion in this section of channel, these headcuts are not considered a significant problem at this time and no remedial action is needed. It is recommended that they continue being watched to ensure they do not progress. Should this area progress in the future remedial action may be required.

The cross vane structures reported as having rocks fallen into the middle of the channel were not observed. The areas of active erosions and scour noted in 2004 appear to have stabilized and were not observed in 2005. No other problems were observed. No significant deposition was noted beyond normal sediment transport. The areas described and evaluated in the 2004 Monitoring Report for active erosion, scour, and sediment deposition appeared to have stabilized during the current monitoring period.

Deaton Farm Stream Restoration NCEEP Project Number: 110 Earth Tech 2005 Monitoring Report Year 3 of 5

Table X. Stream Problem Areas Deaton Farm Stream Restoration Site/Number 110									
Feature/Issue Station #/Range Probable Cause Ph									
Headcut-minor	Southern Trib 5+34	Soils	N/A						
Headcut-Hillor	Southern Trib 19+12	Cross vane/ soils	1 v /A						

Table XI. Categ	•		•		t
	Farm Stream nt/Reach: Sou				
Feature	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles	100%	100%	100%	W11-04	W11-03
B. Pools	100%	97%	100%		
C. Thalweg	100%	100%	100%		
D. Meanders	100%	97%	100%		
E. Bed General	99%	99.8%	99.8%		
F. Vanes/J Hooks etc.	89%	89%	100%		
G. Rootwads and		NT/A	DT/A		
Boulders	N/A	N/A	N/A		
Segme	nt/Reach: Noi	thern Tribut	ary (1,364 f	eet)	
Feature	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles	95%	95%	100%		
B. Pools	100%	96%	100%		
C. Thalweg	100%	100%	100%		
D. Meanders	100%	100%	100%		
E. Bed General	100%	100%	100%		
F. Vanes/J Hooks etc.	83%	100%	100%		
G. Rootwads and	N/A	N/A	N/A		
Boulders	1 1/2 1	14/11	1 1/11		

Note: The Year 1 and 2 estimates are Earth Tech's estimate based upon review of previous monitoring reports. No rootwads or boulders were used in this restoration.

C. Wetland Assessment

No wetland restoration is associated with this site. Tables XIV is not applicable to this project.

Table XII. Baseline Morphology and Hydraulic Summary **Deaton Farm Stream Restoration Site/Number 110** Segment/Reach: Southern Tributary (2,697 feet) Regional Curve Pre-Existing Project Reference **USGS** Data **Parameter** Design As-built Interval* condition Stream Max Med Min Max Med Dimension Min BF Width (ft) 6.1 7.1 6.6 3 20 BF Cross Sectional Area (ft²) 18 5 7 6 2 BF Mean Depth (ft) 0.8 1.0 0.9 0.4 1.3 BF Max Depth (ft) 0.8 2.7 Width/Depth Ratio 6.5 Entrenchment Ratio 2.6 Wetted Perimeter (ft) Hydraulic radius (ft) **Pattern** Channel Beltwidth (ft) 7.0 48.0 23.5 Radius of Curvature (ft) 29.7 16.8 8.8 Meander Wavelength 26 90 56 Meander Width ratio 0.8 4.6 3.1 Profile Riffle length (ft) Riffle slope (ft/ft) Pool length (ft) Pool spacing (ft) Substrate d50 (mm) 9 d84 (mm) **Additional Reach Parameters** Valley Length (ft) N/A Channel Length (ft) N/A Sinuosity N/A Water Surface Slope (ft/ft) N/A BF slope (ft/ft) 0.008 0.02 Rosgen Classification E4 N/A Habitat Index Macrobenthos N/A

N/A – Historical project documents necessary to provide this data were unavailable at the time of this report submission

^{*}Regional curve data based on 0.15 square mile watershed.

			Ta	Segme	Farm S ent/Rea	Stream ch: Nor	hology a Restora thern T	tion Sit	e/Numl	ber 110 4 feet))							
Parameter	USGS Data			Regional Curve Interval*			Pre-Existing condition			Project Reference Stream			Design			As-built		
Dimension	Min	Max	Me d	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)				8.0	10	9.0	3	20										
BF Cross Sectional Area (ft ²)				10	11	10.5	2	18										
BF Mean Depth (ft)				1.0	1.2	1.1	0.4	1.3										
BF Max Depth (ft)							0.8	2.7										
Width/Depth Ratio									10.2									
Entrenchment Ratio									4.9				4	6				
Wetted Perimeter (ft)									N/A									
Hydraulic radius (ft)									N/A									
Pattern																		
Channel Beltwidth (ft)									N/A				15.0	51.0	34.5			
Radius of Curvature (ft)									N/A				17.0	28.0	23.9			
Meander Wavelength									N/A				69.0	139.0	100			
Meander Width ratio									N/A				1.1	3.7	2.7			
Profile																		
Riffle length (ft)									N/A									
Riffle slope (ft/ft)									N/A									
Pool length (ft)									N/A									
Pool spacing (ft)									N/A									
Substrate					•										•			
d50 (mm)									9						15			
d84 (mm)									29						50			
Additional Reach Parameters																		
Valley Length (ft)									N/A									
Channel Length (ft)									N/A									
Sinuosity									N/A						1:3			
Water Surface Slope (ft/ft)									N/A									
BF slope (ft/ft)							0.008	0.02										
Rosgen Classification									N/A						E4			
Habitat Index																		
Macrobenthos									N/A									

N/A – Historical project documents necessary to provide this data were unavailable at the time of this report submission

Deaton Farm Stream Restoration NCEEP Project Number: 110 Earth Tech

^{*}Regional curve data based on 0.15 square mile watershed.

			Table	XIII. M	ornhology	and Hvd	raulic Moni	toring Sun	ımarv							
							ation Site/N									
							Tributary (
Parameter	C	ross Section	1	Cr	oss Sectio	n 2	Cross Section 3			Cr	oss Section	n 4	Cross Section 5			
		~0+69 Pool	· =	~8+63 Riffle			~19+00 Riffle			~23+36 Riffle			~24+17 Pool			
Dimension	MY1	MY2	MY3	MY1	MY2	MY3	MY1	MY2	MY3	MY1	MY2	MY3	MY1	MY2	MY3	
BF Width (ft)	10.3	10.6	20.4	18.3	18.9	4.9	11.1	6.3	9.6	7.9	7.6	10.4	22.1	8.5	14.6	
Floodprone Width (ft) (approx)				32	32	>24	40		>30	60	60	>45				
BF Cross Sectional Area (ft ²)	7.8	8.0	18.4	6.6	8.2	2.2	4.6	4.0	7.7	4.6	4.6	6.0	16.3	7.9	14.9	
BF Mean Depth (ft)	0.8	0.8	0.9	0.4	0.4	0.5	0.4	0.6	0.8	0.6	0.6	0.6	0.7	0.9	1.0	
BF Max Depth (ft)	1.6	1.5	2.3	0.9	1.1	0.9	0.9	1.3	1.7	1.0	1.1	1.1	2.5	1.7	2.1	
Width/Depth Ratio	12.9	13.2	22.7	50.8	43.4	10.7	26.8	10.5	12.0	13.4	12.6	18.1	31.6	9.4	14.6	
Entrenchment Ratio				1.8	1.7	>4.9	3.6		>3.1	7.6	7.9	>4.3				
Wetted Perimeter (ft)	10.9	11.1	22.2	18.5	19.1	5.8	11.5	7.0	11.2	8.2	8.1	11.5	23.3	9.5	16.6	
Hydraulic radius (ft)	0.7	0.7	0.8	0.4	0.4	0.38	0.4	0.6	0.69	0.6	0.6	0.52	0.7	0.8	0.89	
Substrate			•		•	•		•				•		•	•	
d50 (mm)	< 0.062	< 0.062	< 0.062	11.3	8.0	0.125	< 0.062	0.25	0.25	5.7	0.25	2	< 0.062	1.0	0.25	
d84 (mm)	0.125	< 0.062	< 0.062	22.6	16.0	22	45.0	22.6	22	22.6	22.6	32	16.0	16.0	16	
	8.			<u> </u>									<u> </u>			
Parameter	N	MY-01 (2003	3)	MY-02 (2004)			MY-03 (2005)			MY-04 (2006)			MY	MY-05 (2007)		
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	
Channel Beltwidth (ft)							7.0	48.0	23.5							
Radius of Curvature (ft)							8.8	29.7	16.8							
Meander Wavelength (ft)							26	90	56							
Meander Width Ratio							0.8	4.6	3.1							
Profile																
Riffle Length (ft)							1.4	74.70	16.64							
Riffle Slope (ft/ft)							0.004	0.14	0.03							
Pool length (ft)							2.04	34.48	11.58							
Pool spacing (ft)							6.86	133.78	39.25							
Additional Reach Parameters																
37 11 T (1 (C))								2,080								
Valley Length (ft)								2,000								
Channel Length (ft)								2,679								
2 0 1																
Channel Length (ft) Sinuosity Water Surface Slope (ft/ft)								2,679 1.3 0.0145								
Channel Length (ft) Sinuosity Water Surface Slope (ft/ft) BF Slope (ft/ft)								2,679 1.3 0.0145 0.0142								
Channel Length (ft) Sinuosity Water Surface Slope (ft/ft)					Е			2,679 1.3 0.0145								
Channel Length (ft) Sinuosity Water Surface Slope (ft/ft) BF Slope (ft/ft)					E 2			2,679 1.3 0.0145 0.0142								
Channel Length (ft) Sinuosity Water Surface Slope (ft/ft) BF Slope (ft/ft) Rosgen Classification Number of Bankfull Events Extent of BF floodplain (area)								2,679 1.3 0.0145 0.0142 E/C								
Channel Length (ft) Sinuosity Water Surface Slope (ft/ft) BF Slope (ft/ft) Rosgen Classification Number of Bankfull Events Extent of BF floodplain (area) BEHI*								2,679 1.3 0.0145 0.0142 E/C								
Channel Length (ft) Sinuosity Water Surface Slope (ft/ft) BF Slope (ft/ft) Rosgen Classification Number of Bankfull Events Extent of BF floodplain (area)								2,679 1.3 0.0145 0.0142 E/C								

Table XIII. Morphology and Hydraulic Monitoring Summary (cont.) Deaton Farm Stream Restoration Site/Number 110									
	Segment/Reach: Northern Tributary (1.374 feet)								
Parameter		Cross Section			Cross Section		Cr	oss Section	8
		~4+51 Pool ~5+76 Riffle ~10+9			10+91 Riffl	e			
Dimension	MY1	MY2	MY3	MY1	MY2	MY3	MY1	MY2	MY3
BF Width (ft)	11.0	13.9	15.4	12.6	15.5	14.5	11.8	14.5	10.9
Floodprone Width (ft) (approx)						>35			>36
BF Cross Sectional Area (ft ²)	11.5	19.9	19.8	10.7	10.3	12.2	10.0	12.3	9.4
BF Mean Depth (ft)	1.0	1.4	1.3	0.9	0.8	0.8	0.9	0.8	0.9
BF Max Depth (ft)	2.2	2.9	2.6	1.5	1.6	1.5	1.3	1.5	1.4
Width/Depth Ratio	11	9.9	11.8	14.8	19.4	17.2	13.2	17.1	12.5
Entrenchment Ratio				8.0	6.5	2.4	3.4	2.8	>3.3
Wetted Perimeter (ft)	12.4	15.3	1.8	13.0	16.0	16.2	12.2	15.2	12.6
Hydraulic radius (ft)	0.9	1.3	1.11	0.8	0.8	0.76	0.9	0.8	0.75
Substrate									
d50 (mm)	5.7	0.125	0.5	8.0	< 0.062	0.5	16.0	2.0	0.125
d84 (mm)	16.0	113	11	32.0	22.6	16	32.0	32.0	22
	•		•	-		•	•	•	
Parameter	I	MY-01 (2003	5)		MY-02 (2004	1)	MY-03 (2005)		5)
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)							15.0	51.0	34.5
Radius of Curvature (ft)							17.0	28.0	23.9
Meander Wavelength (ft)							69	139	100
Meander Width Ratio							1.1	3.7	2.7
Profile						•		•	
Riffle Length (ft)							1.29	79.18	12.55
Riffle Slope (ft/ft)							0.0009	0.10	0.02
Pool length (ft)							4.52	62.94	18.14
Pool spacing (ft)							24.3	142.12	45.94
Additional Reach Parameters						•		•	
Valley Length (ft)								1,195	
Channel Length (ft)								1,363	
Sinuosity								1.1	
Water Surface Slope (ft/ft)								0.0078	
BF Slope (ft/ft)								0.0076	
Rosgen Classification (2005)					E/C			С	
Number of Bankfull Events					2			1 to 2	
Extent of BF floodplain (area)									
BEHI*									
Habitat Index*									
Macrobenthos*									

Appendix A

Vegetation Raw Data

- A1 Vegetation Survey Data Tables
- A3 Vegetation Monitoring Plot Photos

Appendix A

Vegetation Raw Data

- A1 Vegetation Survey Data Tables
- A3 Vegetation Monitoring Plot Photos

Appendix A.1 **Deaton Farm Stream Restoration Monitoring Year 2005 EEP Site Number 110**

	Exhibit Table VIII. Stem Cou	nts for eac	h snecie	s arranged by	nlot				
	Species Species			T X 50 FT)	*Initial Planting	Year 1 Totals	Year 2 Totals	Year 3 Totals	Survival %
Scientific Name	Common Name	Plot 1	Plot 2	Total Stems					
Shrubs									
No shrubs monitored									
at this site.									
	Total Shrubs	0	0	0	-				
Trees									
Fraxinus pennsylvanica	Green ash	5	8	13		11	15	13	
Quercus phellos	Willow oak	13	1	14		22	16	14	
Quercus nigra	Water oak	0	1	1		6	2	1	
Quercus laurifolia	Laurel oak	4	0	4		8	3	4	
Quercus falcata	Southern red oak	0	9	9		1	1	9	
	Total Trees	22	19	41	94	48	37	41	44%
TABLE	Total Ctamp of planted						ı		
SUMMARY	Total Stems of planted Woody vegetation.	22	19	41	94	48	37	41	44%
	Current Density			**Average Stems per Acre					
	* Stems per acre	383	331	357	819	418	322	357	
	Stems per hectare	947	818	883	2024	1033	797	883	

^{*} Stems per acre calculated on size of plot (0.05739 acre) and number of stems within plot. ** Percent survival calculated for current year based on initial at planting.

Exotic Invasive Species		Plot 1	Plot 2
Rosa multiflora	Multiflora rose		Υ
Additional Species Observe	ed		
Carex sp.	Sedge	Υ	Υ
Cirsium pumilum	Pasture thistle	Υ	
Eupatorium capillifolium	Dog fennel	Y*	Υ
Juncus effusus	Common rush	Y*	Y*
Lolium arundinaceum	Tall pasture fescue	Υ	
Mimulus alatus	Sharpwing monkeyflower	Υ	
Panicum anceps	Beaked panicgrass	Υ	
Polygonum pensylvanicum	Pennsylvania smartweed	Y*	Y*

Stems per acre are more than indicated in the initial report due to difference in the way stems per acre are calculated. The initial report assumed only 680 stems per acre were planted. Subsequent year was calculated using percent loss of stems multiplied by the assumed 680 stems per acre.

*= other dominate species

Appendix A2 Deaton Farm Stream Restoration Site Year 3Monitoring Vegetation Monitoring Plot Photos

Vegetation Plot Photo 1A

Vegetation Plot Photo 1B

Vegetation Plot Photo 2A

Vegetation Plot Photo 2B

APPENDIX B Geomorphologic Raw Data

B3	Stream Photos-station Photos
B4	Table B.1 Qualitative Visual Stability Assessment

- **B5** Cross section Plots and Raw Data Tables
- **B6** Longitudinal Plots and Raw Data Table
- **B7** Pebble Count Plots and Raw Data Tables
- **B8** USGS Stream Gauge Plot/Extract

APPENDIX B Geomorphologic Raw Data

B3	Stream Photos-station Photos
B4	Table B.1 Qualitative Visual Stability Assessment

- **B5** Cross section Plots and Raw Data Tables
- **B6** Longitudinal Plots and Raw Data Table
- **B7** Pebble Count Plots and Raw Data Tables
- **B8** USGS Stream Gauge Plot/Extract

APPENDIX B3

Stream Photos-station Photos

Photo Point 1 Upstream

Photo Point 1 Downstream

Photo Point 2 Upstream

Photo Point 2 Downstream

Photo Point 3 Upstream

Photo Point 3 Downstream

APPENDIX B3 Stream Photos-station Photos

Photo Point 4 Upstream

Photo Point 4 Downstream

Photo Point 5 Upstream

Photo Point 5 Downstream

Photo Point 6 Upstream

	Table B1. Visual Morphological Sta	bility Assessment				
	Deaton Farm Stream Restor	ation/(110)				
	Southern Tributary (2,6	697 ft)				
Feature Category	Metric (per As-built and reference baselines)	(# Stable)	Total	Total	% Perform	Feature
		Number performing	number per	Number/ feet	in Stable	Perform.
		as Intended	As-built	in unstable	Condition	Mean or
				state		Total
A. Riffles	1. Present?	52	NA	0	100%	
	2. Armor stable (e.g. no displacement)?		NA	0	100%	
	3. Facet grade appears stable?		NA	0	100%	
	4. Minimal evidence of embedding/fining?		NA	0	100%	
	5. Length appropriate?		NA	0	100%	100%
B. Pools*	1. Present? (e.g. not subject to severe aggrad. or migrat.?)	62	NA	0	100%	
D. FOOIS	2. Sufficiently deep (Max Pol D: Mean Bkf>1.6?)	02	NA NA	0	100%	
	3. Length appropriate?		NA NA	0	100%	100%
	5. Length appropriate?		NA	U	100%	100%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	NA	NA	0	100%	
-	2. Downstream of meander (glide/inflection) centering?	NA	NA	0	100%	100%
D. Meanders**	1. Outer bend in state of limited/controlled erosion?	71	NA	0	100%	
D. Meanders***		/1	NA NA	0	100%	
	2. Of those eroding, # w/ concomitant point bar formation?		NA NA			
	3. Apparent Rc within spec?			0	100%	1000/
	4. Sufficient floodplain access and relief?		NA	0	100%	100%
E. Bed General	1. General channel bed aggradation (bar formation)?	NA	NA	0		
	2. Channel bed degradation - areas of increasing downcutting or head cutting?	NA	NA	1/7	99.97%	99.97%
E Vanask	1 Euro of hook on a muse of hook of the first of hook of the first of hook of the first of the first of hook of hook of the first of hook of hook of the first of hook of hoo	10	NIA	0	1000/	
F. Vanes*	1. Free of back or arm scour?	18	NA NA	0	100% 100%	
	2. Height appropriate?		NA NA	0		
	3. Angle and geometry appear appropriate?		NA NA	0	100%	1000/
	4. Free of piping or other structural failures?		NA	0	100%	100%
G. Wads/ Boulders	1. Free of scour?	NA	NA			
	2. Footing stable?	NA	NA			

**Pools and vanes are from longitudinal profile survey.

***Meander number is from design sheet.

N/A – Historical project documents necessary to provide this data were unavailable at the time of this report submission

	Table B1. Visual Morphological Stability Assessment Deaton Farm Stream Restoration/(110) Northern Tributary (1,364 ft)						
Feature Category	Metric (per As-built and reference baselines)	(# Stable) Number performing as Intended	Total number per As-built	Total Number/ feet in unstable state	% Perform in Stable Condition	Feature Perform. Mean or Total	
A. Riffles	1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grade appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate?	23	NA NA NA NA	0 0 0 0	100% 100% 100% 100%	100%	
B. Pools*	Present? (e.g. not subject to severe aggrad. or migrat.?) Sufficiently deep (Max Pol D: Mean Bkf>1.6?) Length appropriate?	25	NA NA NA	0 0 0	100% 100% 100%	100%	
C. Thalweg	Upstream of meander bend (run/inflection) centering? Downstream of meander (glide/inflection) centering?	NA NA	NA NA	0	100% 100%	100%	
D. Meanders**	Outer bend in state of limited/controlled erosion? Of those eroding, # w/ concomitant point bar formation? Apparent Rc within spec? Sufficient floodplain access and relief?	23	NA NA NA NA	0 0 0 0	100% 100% 100% 100%	100%	
E. Bed General	General channel bed aggradation (bar formation)? Channel bed degradation - areas of increasing downcutting or head cutting?	NA NA	NA NA	0	100% 100%	100%	
F. Vanes*	Free of back or arm scour? Height appropriate? Angle and geometry appear appropriate? Free of piping or other structural failures?	7	NA NA NA NA	0 0 0 0	100% 100% 100% 100%	100%	
G. Wads/ Boulders	1. Free of scour? 2. Footing stable?	NA NA	NA NA				

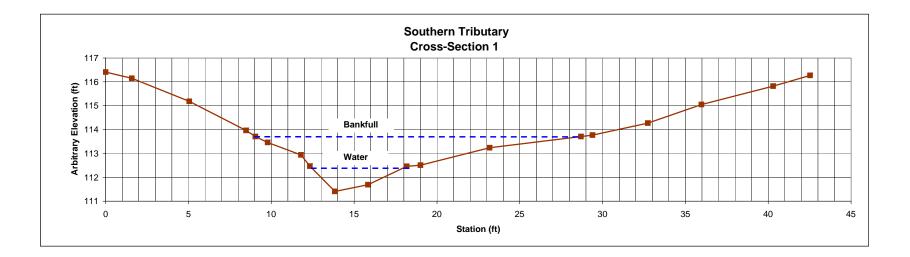
*Pools and vanes are from longitudinal profile survey.

**Meander number is from design sheet.

N/A – Historical project documents necessary to provide this data were unavailable at the time of this report submission

Deaton Farm Stream Restoration Site Monitoring Year 2005 EEP Site Number 110

Jan Patterson, Chad Holland, and Wade Patton Fork Creek Southern Tributary 11/7-15/2005


Field Crew: Watershed: Stream Reach: Date: Station: Feature: 0+69 Pool

STATION (FEET)	ELEVATION (FEET)	NOTES
0+00.0	116.41	LPIN
0+01.6	116.15	
0+05.1	115.18	
0+08.5	113.96	
0+09.0	113.71	LBKF
0+09.8	113.46	
0+11.8	112.94	
0+12.3	112.47	LEW/WS
0+13.8	111.41	TW
0+15.8	111.69	
0+18.2	112.46	REW/WS
0+19.0	112.51	
0+23.2	113.24	
0+28.7	113.71	RBKF
0+29.4	113.77	
0+32.7	114.27	
0+36.0	115.05	
0+40.3	115.82	
0+42.5	116.27	RPIN

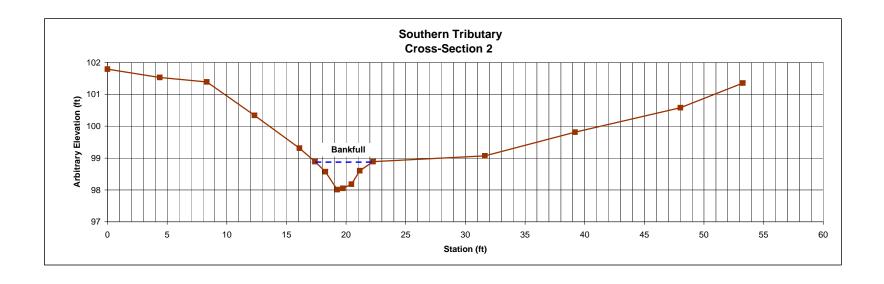
	BANKFULL/TOB Hydraulic Geometry						
	Width	Depth	Area				
	(Feet)	(Feet)	(Sq. Ft.)				
	0.0	0.0	0.0				
	0.7	0.3	0.1				
	2.0	0.8	1.0				
	0.5	1.2	0.5				
	1.5	2.3	2.7				
	2.0	2.0	4.3				
	2.3	1.3	3.8				
	8.0	1.2	1.0				
	4.2	0.5	3.5				
	6.2	0.0	1.5				
LS	20.4		18.4				

SUMMARY DATA (TOB)						
A(BKF)	18.4					
W(BKF)	20.4	Wetted Perimeter*	22.2			
Max d	2.3	Hyd. Radius	0.83			
Mean d	0.9					

^{*}Approximated as Wp=(2*MeanD)+W

Jan Patterson, Chad Holland, and Wade Patton Fork Creek Southern Tributary 11/7-15/2005 Field Crew: Watershed: Stream Reach: Date: Station: 8+63 Riffle/Run

STATION (FEET)	ELEVATION (FEET)	NOTES
0+00.0	101.79	LPIN
0+04.4	101.53	
0+08.3	101.39	
0+12.3	100.34	
0+16.1	99.31	
0+17.4	98.89	LBKF
0+18.3	98.57	
0+19.3	98.01	
0+19.7	98.05	TW
0+20.5	98.18	
0+21.2	98.60	
0+22.3	98.89	RBKF
0+31.6	99.07	
0+39.2	99.81	
0+48.0	100.58	
0+53.3	101.35	RPIN


98.30

WS

		BANKFULL Hydraulic Geom	etry
	Width	Depth	Area
	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0.0
	0.9	0.3	0.1
	1.0	0.9	0.6
	0.5	0.8	0.4
	0.7	0.7	0.6
	0.7	0.3	0.4
	1.1	0.0	0.2
TOTALS	4.9		2.2

SUMMARY DATA (BANKFULL)				
A(BKF)	2.2	W(FPA)	>24	
W(BKF)	4.9	Wetted Perimeter*	5.8	
Max d	0.9	Hyd. Radius	0.38	
Mean d	0.5	Area= A		
W/D	10.7	Width= W		
Entrenchment	>4.9	Depth= D		
Stream Type	E	Bankfull= Bh	(F	

*Approximated as Wp=(2*MeanD)+W

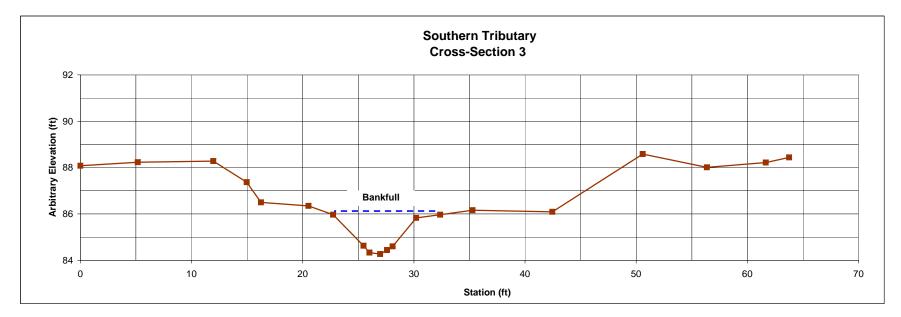
Field Crew: Jan Patterson, Chad Holland, and Wade Patton Watershed: Fork Creek

 Watershed:
 Fork Creek

 Stream Reach:
 Southern Tributary

 Date:
 11/7-15/2005

 Station:
 19+00


 Feature:
 Riffle

		BANKFULL Hydraulic Geom	etry
	Width	Depth	Area
	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0.0
	2.7	1.3	1.8
	0.5	1.6	0.8
	1.0	1.7	1.6
	0.6	1.5	1.0
	0.5	1.4	0.7
	2.1	0.1	1.6
	2.2	0.0	0.2
TOTALS	9.6		7.7

STATION	ELEVATION	NOTES
(FEET)	(FEET)	
0+00.0	88.08	LPIN
0+05.2	88.23	
0+12.0	88.28	
0+15.0	87.37	
0+16.3	86.50	
0+20.5	86.35	
0+22.7	85.97	LBKF
0+25.5	84.63	
0+26.0	84.33	
0+27.0	84.27	TW
0+27.6	84.44	
0+28.1	84.60	
0+30.2	85.83	
0+32.4	85.97	RBKF
0+35.3	86.16	
0+42.5	86.09	
0+50.6	88.58	
0+56.4	88.01	
0+61.7	88.22	
0+63.8	88.44	RPIN

SUMMARY DATA (BANKFULL)			
A(BKF)	7.7	W(FPA)	>30
W(BKF)	9.6	Wetted Perimeter*	11.2
Max d	1.7	Hyd. Radius	0.69
Mean d	8.0	Area= A	
W/D	12.0	Width= W	
Entrenchment	>3.1	Depth= D	
Stream Type	E/C	Bankfull= BKI	=

^{*}Approximated as Wp=(2*MeanD)+W

Field Crew: Jan Patterson, Chad Holland, and Wade Patton Watershed: Fork Creek

 Watershed:
 Fork Creek

 Stream Reach:
 Southern Tributary

 Date:
 11/7-15/2005

 Station:
 23+36

 Feature:
 Riffle

0+26.9

0+29.9

0+32.7

0+37.9

0+42.7

0+45.4

STATION (FEET)	ELEVATION (FEET)	NOTES
0+00.0	81.40	LPIN
0+02.4	81.34	
0+06.9	81.47	
0+11.5	81.12	
0+18.6	81.13	
0+19.5	81.04	LBKF
0+21.5	80.84	
0+22.9	79.97	LEW/WS
0+23.5	79.94	TW
0+23.8	79.97	
0+24.8	79.98	

80.36

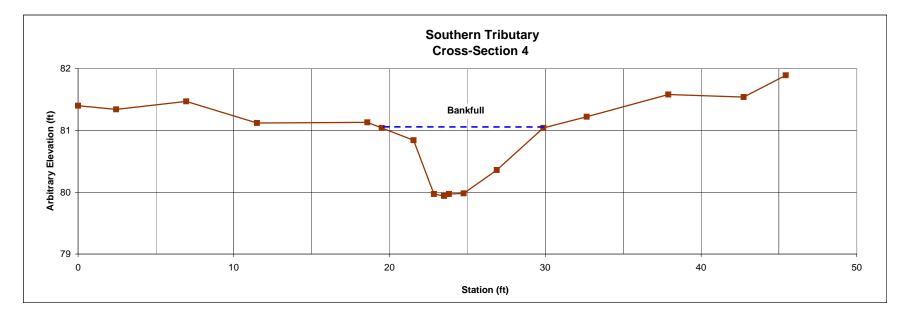
81.04

81.22

81.58

81.54

81.89


RBKF

RPIN

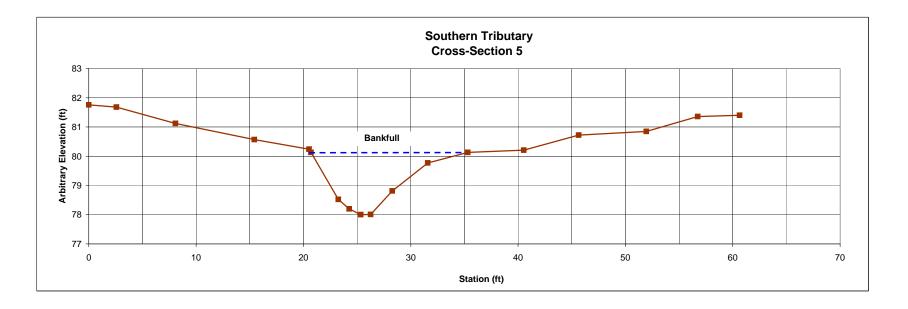
		BANKFULL Hydraulic Geome	try
	Width	Depth	Area
	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0.0
	2.0	0.2	0.2
	1.3	1.1	0.8
	0.6	1.1	0.7
	0.3	1.1	0.3
	1.0	1.1	1.0
	2.1	0.7	1.9
	3.0	0.0	1.0
TOTALS	10.4		6.0

SUMMARY DATA (BANKFULL)			
A(BKF)	6.0	W(FPA) >45	
W(BKF)	10.4	Wetted Perimeter* 11.5	
Max d	1.1	Hyd. Radius 0.52	
Mean d	0.6	Area= A	
W/D	18.1	Width= W	
Entrenchment	>4.3	Depth= D	
Stream Type	С	Bankfull= BKF	
* ^ ===================================	/0*MD		_

^{*}Approximated as Wp=(2*MeanD)+W

Jan Patterson, Chad Holland, and Wade Patton Fork Creek Field Crew: Watershed:

Stream Date: Station Feature


n Reach:	Southern Tributary
	11/7-15/2005
n:	24+17
re:	Pool

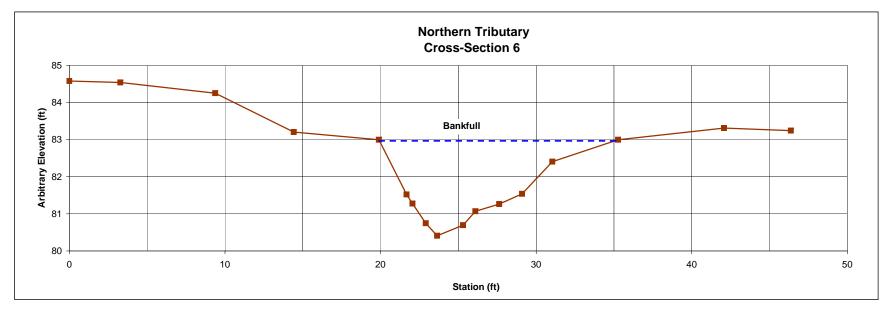
STATION (FEET)	ELEVATION (FEET)	NOTES
0+00.0	81.76	LPIN
0+02.6	81.68	
0+08.1	81.12	
0+15.4	80.57	
0+20.5	80.24	
0+20.7	80.13	LBKF
0+23.3	78.52	
0+24.3	78.20	
0+25.3	78.00	TW
0+26.3	78.01	
0+28.3	78.81	
0+31.6	79.77	
0+35.3	80.13	RBKF
0+40.5	80.21	
0+45.7	80.72	
0+52.0	80.85	
0+56.7	81.36	
0+60.6	81.40	RPIN

	Hy	BANKFULL/TOE draulic Geometr	
	Width	Depth	Area
	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0.0
	2.6	1.6	2.1
	1.0	1.9	1.8
	1.1	2.1	2.2
	0.9	2.1	2.0
	2.0	1.3	3.5
	3.3	0.4	2.8
	3.7	0.0	0.7
TOTALS	14.6		14.9

SUMMARY DATA (TOB)				
A(BKF)	14.9			
W(BKF)	14.6	Wetted Perimeter*	16.6	
Max d	2.1	Hyd. Radius	0.89	
Mean d	1.0			

^{*}Approximated as Wp=(2*MeanD)+W

Field Crew: Watershed: Jan Patterson, Chad Holland, and Wade Patton Fork Creek


Stream Reach: Northern Tributary 11/7-15/2005 Date: 4+51 Pool Station: Feature:

STATION (FEET)	ELEVATION (FEET)	NOTES
0+00.0	85.05	LPIN
0+03.3	85.01	
0+09.4	84.72	
0+14.4	83.65	
0+19.9	83.44	RBKF
0+21.7	81.94	
0+22.1	81.69	LEW
0+22.9	81.15	
0+23.6	80.81	TW
0+25.3	81.10	
0+26.1	81.48	
0+27.6	81.68	REW/WS
0+29.1	81.96	
0+31.0	82.84	
0+35.3	83.44	RBKF
0+42.1	83.76	
0+46.4	83.69	

	Hydi	BANKFULL raulic Geometry	
	Width	Depth	Area
	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0.0
	1.8	1.5	1.3
	0.4	1.8	0.6
	0.9	2.3	1.7
	0.7	2.6	1.8
	1.7	2.3	4.1
	0.8	2.0	1.7
	1.5	1.8	2.8
	1.5	1.5	2.4
	1.9	0.6	2.0
	4.2	0.0	1.3
TOTALS	15.4		19.8

SUMMARY DATA (TOB)				
A(BKF)	19.8			
W(BKF)	15.4	Wetted Perimeter*	18.0	
Max d	2.6	Hyd. Radius	1.11	
Mean d	1.3			

^{*}Approximated as Wp=(2*MeanD)+W

Field Crew: Jan Patterson, Chad Holland, and Wade Patton Watershed: Fork Creek

ELEVATION

(FEET) 83.79

83.80

82.69

82.55

82.36

81.71

81.33

81.00

80.89

80.97

81.07

81.07

81.37

81.58

82.00

82.36

82.44

82.50

NOTES

LPIN

LBKF

TW

REW

RBKF

RPIN

83.83

STATION

(FEET)

0+00.0 0+03.8

0+07.7

0+10.3

0+13.6

0+15.2

0+16.8

0+17.6

0+19.0

0+19.7

0+20.9

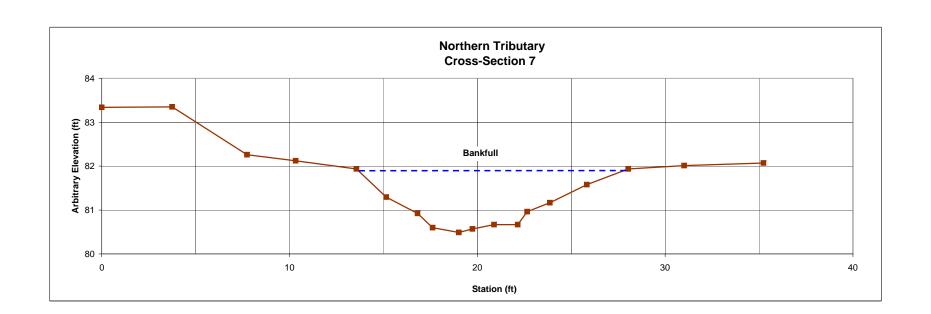
0+22.2

0+22.7

0+23.9

0+25.8

0+28.0


0+31.0

0+35.2

		BANKFULL	
		Hydraulic Geometr	у
	Width	Depth	Area
	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0.0
	1.6	0.7	0.5
	1.7	1.0	1.4
	8.0	1.4	1.0
	1.4	1.5	2.0
	0.7	1.4	1.0
	1.2	1.3	1.5
	1.3	1.3	1.6
	0.5	1.0	0.6
	1.2	0.8	1.1
	2.0	0.4	1.1
	2.2	0.0	0.4
TOTALS	14.5		12.2

SUMMARY DATA (BANKFULL)				
A(BKF)	12.2	W(FPA)	>35	
W(BKF)	14.5	Wetted Perimeter*	16.2	
Max d	1.5	Hyd. Radius	0.76	
Mean d	8.0	Area=	A	
W/D	17.2	Width=	W	
Entrenchment	2.4	Depth=	D	
Stream Type	С	Bankfull=	BKF	
*A				

^{*}Approximated as Wp=(2*MeanD)+W

Field Crew: Jan Patterson, Chad Holland, and Wade Patton Watershed: Fork Creek

 Watershed:
 Fork Creek

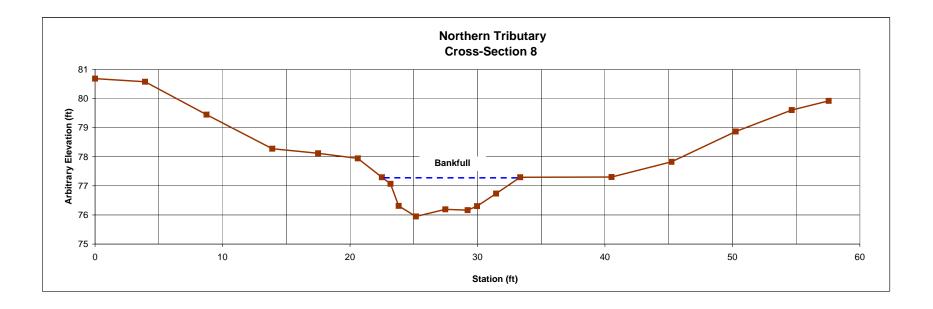
 Stream Reach:
 Northern Tributary

 Date:
 11/7-15/2005

 Station:
 10+91

 Feature:
 Riffle

0+57.6


					BANKFULL/TOB	
STATION	ELEVATION	NOTES			Hydraulic Geomet	ry
(FEET)	(FEET)			Width	Depth	Area
0+00.0	81.09	LPIN		(Feet)	(Feet)	(Sq. Ft.)
0+03.9	80.98			0.0	0.0	0.0
0+08.7	79.83			0.7	0.2	0.1
0+13.9	78.64			0.6	1.0	0.4
0+17.5	78.48			1.4	1.4	1.6
0+20.6	78.30			2.3	1.1	2.9
0+22.5	77.64	LBKF		1.8	1.2	2.0
0+23.2	77.41			0.7	1.0	0.8
0+23.8	76.64	LEW/WS		1.5	0.6	1.2
0+25.2	76.27	TW		1.9	0.0	0.5
0+27.5	76.52					
0+29.2	76.49					
0+30.0	76.63					
0+31.5	77.07					
0+33.4	77.64	RBKF	TOTALS	10.9		9.4
0+40.5	77.65		-			
0+45.2	78.18		79.01			
0+50.3	79.24					
0+54.7	79.99					

RPIN

80.31

SUMMARY DATA (BANKFULL)			
A(BKF)	9.4	W(FPA) >36	
W(BKF)	10.9	Wetted Perimeter* 12.6	
Max d	1.4	Hyd. Radius 0.75	
Mean d	0.9	Area= A	
W/D	12.5	Width= W	
Entrenchment	>3.3	Depth= D	
Stream Type	С	Bankfull= BKF	

^{*}Approximated as Wp=(2*MeanD)+W

Field Crew: Jan Patterson, Chad Holland, and Wade Patton

Watershed: Fork Creek
Stream Reach: Northern Tributary
Date: 11/7-15/2005

LONGITUDINAL PROFILE

Station	<u>TW</u>	<u>ws</u>	<u>BKF</u>	<u>NOTES</u>
0+00	85.20	85.55	86.90	Riffle
0+10	84.83	85.14		Run
0+26	84.63	85.17		Pool
0+31	83.85	85.11	87.20	Pool
0+51	82.85	85.14		Max Pool
0+57	83.79			Glide
0+61	85.06	85.13		Riffle
0+63	84.97		86.74	CV
0+76	83.77	84.78		Pool
0+85	81.85	84.87		Max Pool
0+95	83.49		86.66	Glide
1+06	84.74	84.93	86.09	Riffle
1+49	83.89	84.12	85.31	CV
1+50	84.10	84.12	85.31	IM
1+58	83.00	83.98		Max Pool
1+64	83.45	83.87	84.73	Glide
1+85	83.98	84.02	85.59	Riffle
1+99	83.08	83.48		Pool
2+10	82.57	83.51		Pool
2+24	82.44	83.54	84.57	Max Pool
2+38	83.07	83.51	84.40	CV
2+56	82.28	83.52	84.40	Max Pool
2+62	83.31	83.41	84.50	Riffle
2+74	83.01	83.18	84.50	Riffle
3+41	82.30	82.61	83.48	Pool
3+45	81.82		83.48	Max Pool
3+52	82.15		83.48	Riffle
3+59.2	82.12			Riffle
3+83.1	81.87	82.55	83.78	Pool
390.5	81.40	82.58	83.78	Max Pool
399.3	81.87		83.78	Glide
401.9	82.24		83.78	Riffle
433.9	81.65		82.84	Pool
441.8	80.81	81.68		Max Pool
447.7	81.11		82.85	Glide
454.5	81.49	81.64	82.85	CV
461.2	81.07			Pool
465.1	80.45	81.56	83.37	Pool
475.2	80.37		83.37	Max Pool
484.3	81.10		83.17	Glide
496.4	81.40	81.36	83.17	Riffle
500.9	80.85		83.17	Pool
505.4	80.71	81.13	82.72	Pool
508.8	80.70	81.13	82.72	Max Pool

513.8	80.88	81.16	82.72	Glide
515.9	81.01	81.13	82.72	Riffle
529.9	80.82			Pool
555.6	80.30	81.08		Max Pool
568.7	80.60	81.07		Glide
571.9	80.89	81.07	82.36	Glide
574.7	80.92	80.97		Riffle
583.6	80.18		82.43	Pool
590.5	79.95	80.55	82.43	Max Pool
600.3	80.60	80.59	82.43	Riffle/CV
608.2	80.24	80.46	82.43	Pool
611.0	79.82	80.46	82.43	Pool
619.2	78.89			Max Pool
626.4	79.97	80.39		Riffle
637.5	79.69	80.38		Pool
642.9	79.27	80.43		Pool
648.0	78.95		81.62	Max Pool
662.0	79.32	80.4	81.62	Glide
685.4	80.32	79.92	81.7	Riffle
694.3	79.78	80.21	81.7	Run
723.1	79.42	79.86	81.09	Pool
727.0	78.64	79.85	81.09	Max Pool
736.0	78.81		80.9	IM
742.3	79.03	79.85	80.9	Glide
752.6	79.68	79.9	80.79	CV
755.4	79.07	79.81	80.79	Pool
756.9	78.39	79.86	80.79	Max Pool
761.5	79.23	79.88	80.83	IM
763.7	79.13	79.88	80.83	Glide
777.9	79.72	79.84	80.52	Riffle
788.9	79.32	79.34	80.52	Pool
795.5	78.12	79.2	80.37	Pool
797.9	78.22	79.3	80.37	Pool
801.7	77.79	79.16	80.22	Max Pool
810.2	77.93	79.2	80.22	Glide
817.0	78.74	79.03	80.26	Riffle
856.5	78.76	78.98	80.26	Run
875.8	78.27	79.02	80.09	Run
893.1	78.25	78.9	80.14	CV
901.9	77.81	78.89	79.79	Max Pool
906.5	78.25	78.98		Glide/Fence
915.6	78.74			Riffle
926.2	78.51			Pool
931.1	77.14	78.67		Max Pool
937.7	78.47	78.59	80.06	Vane
940.4	76.92	78.16	80.06	Pool
944.6	76.89			Pool
949.2	76.77	77.98	78.97	Vane
9+54.5	76.74	77.98	78.97	Pool
9+61.6	76.00	77.99	78.94	Max Pool
9+68.6	76.78	77.98	78.94	Glide
9+75.4	77.08	77.45	79.18	Riffle
9+93.7	76.65		79.18	Run

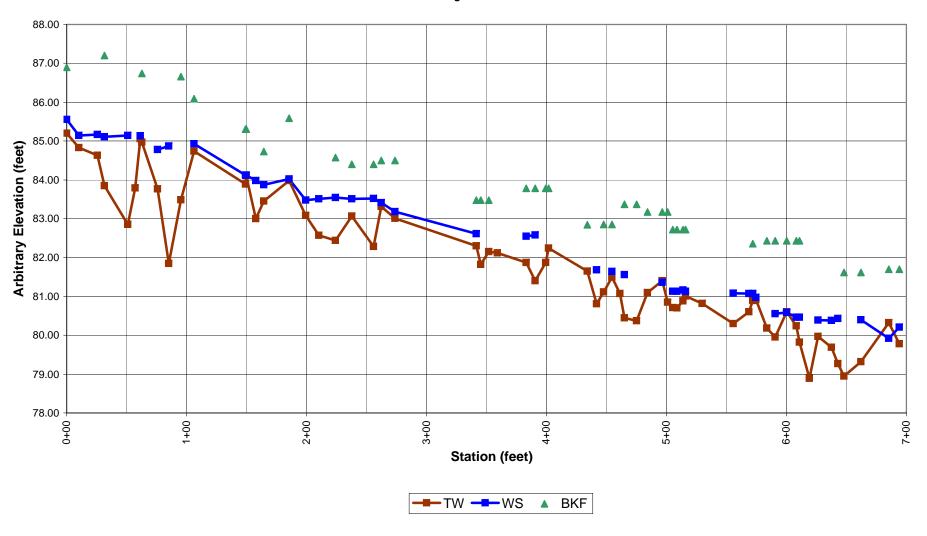
			•	
10+19.7	76.37		79.04	Pool
10+30.9	75.62	76.76	78.89	Max Pool
10+35.3	76.08	76.77	78.89	IM
10+41.8	76.63	77.16	78.79	Glide
10+52.8	77.05	77.22	78.76	Vane
10+56.7	75.20	77.22	78.76	Max Pool
10+61.7	76.06		78.76	IM
10+67.2	76.42	77.07	78.76	Glide
10+81.9	77.02	77.22	78.22	Riffle
10+87.9	76.27	76.64	78.3	Run
11+06.4	76.28	76.54	77.1	Run
11+09.9	76.01	76.57	77.1	Run
11+24.6	76.49			Vane
11+31.0	76.08	76.63	77.76	Run
11+52.6	76.21	76.65	77.74	Run
11+77.6	75.93	76.18	77.71	Pool
11+85.3	75.07	76.18	77.71	Max Pool
11+94.8	75.29	76.3	77.32	Glide
12+06.6	75.93	76.23	77.48	Riffle
12+28.3	75.73	75.85	77	Pool
12+38.3	74.72	75.75	77.19	Pool
12+42.6	74.52	75.83	77.19	Max Pool
12+51.9	74.91	75.84	76.6	Glide
12+71.3	75.11	75.46	76.97	Glide
12+78.5	75.23	75.5	76.97	Pool
12+94.7	74.52	75.41	76.39	Pool
12+97.8	74.00	75.41	76.39	Max Pool
13+03.5	74.62	75.55	76.39	IM
13+10.6	74.59	75.2	76.39	Glide
13+29.7	75.27	75.54	76.18	Riffle
13+63.6	74.73	74.98	76.48	Culvert

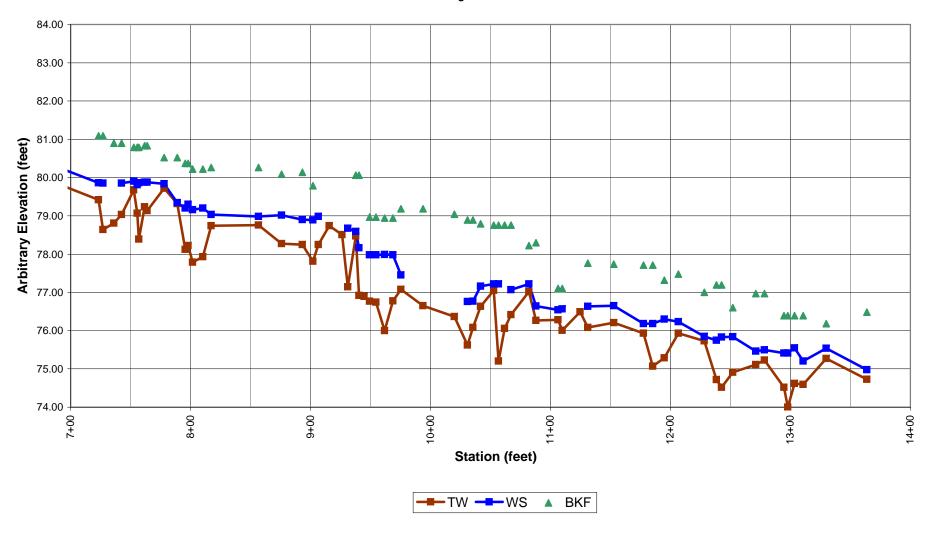
Field Crew: Jan Patterson, Chad Holland, and Wade Patton

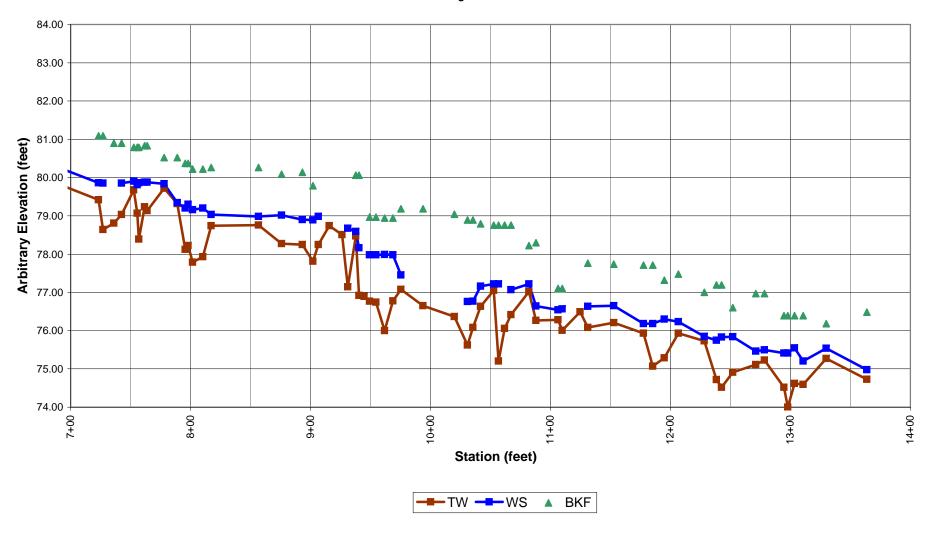
Watershed: Fork Creek
Stream Reach: Southern Tributary
Date: 11/7-15/2005

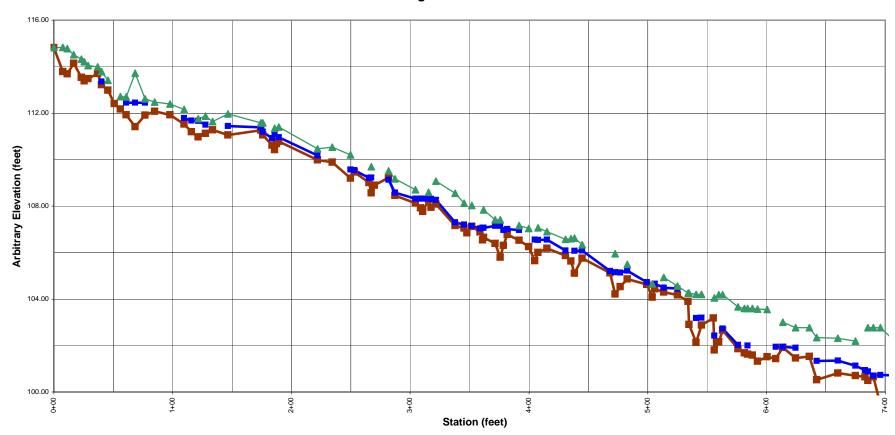
LONGITUDINAL PROFILE

<u>Station</u>	<u>TW</u>	<u>ws</u>	<u>BKF</u>	NOTES
0+00	114.82		114.81	Riffle
0+07	113.79		114.83	Pool
0+11	113.69		114.78	Max Pool
0+17	114.14		114.51	Riffle
0+23	113.54		114.32	Pool
0+26	113.39		114.21	Max Pool
0+29	113.48		114.05	Glide
0+37	113.70		113.99	Riffle
0+40	113.22	113.35	113.78	Riffle
0+45	112.99		113.41	Riffle
0+51	112.41			Run
0+56	112.17		112.71	Pool
0+61	111.92	112.45	112.69	Pool
0+69	111.42	112.45	113.71	Max Pool
0+77	111.91	112.45	112.61	Glide
0+85	112.08		112.47	Riffle
0+98	111.93		112.39	Run
1+10	111.53	111.79	112.16	Pool
1+16	111.19	111.67		Pool
1+22	110.97	111.66	111.76	Max Pool
1+28	111.13	111.50	111.87	Glide
1+34	111.28		111.63	Run
1+47	111.06	111.44	111.97	Run
1+74	111.26	111.39	111.58	Riffle
1+76	111.06	111.19	111.58	Pool
1+84	110.61	110.92		Pool
1+86	110.42	111.09	111.35	Max Pool
1+87.4	110.69			Glide
1+89.4	110.78	110.96	111.40	Riffle
221.9	109.98	110.18	110.47	Riffle
234.5	109.89		110.54	Pool
249.9	109.20	109.57	110.20	Max Pool
253.1	109.46	109.54		Riffle
265.4	109.00	109.21		Pool
267.2	108.56	109.22	109.69	Max Pool
270.1	108.89			Glide
281.8	109.22	109.13	109.52	Riffle
287.3	108.45	108.58	109.17	Run
304.4	108.13	108.31	108.70	Pool
308.8	107.92	108.31		Pool
310.5	107.77	108.31		Max Pool
315.6	108.29	108.31	108.59	CV
317.6	107.94	108.3		Max Pool
321.6	108.08	108.26	109.07	Riffle
337.8	107.16	107.3	108.55	Run
345.3	107.05	107.2	108.12	Run
347.8	106.85			Run

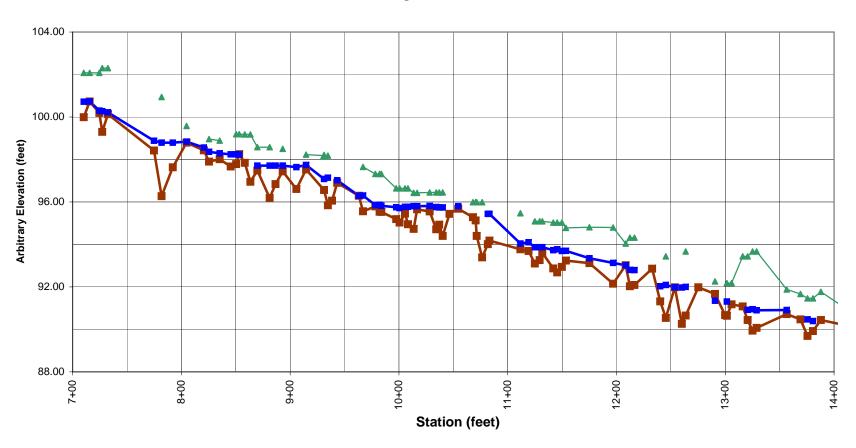

	-			
351.9	107.12	107.14	108.03	Run
358.8	106.88	107.04		Pool/CV
361.0	106.54	107.06		Pool
361.9	106.65	107.06	107.84	Pool
371.6	106.39	107.14	107.41	Pool
375.9	105.80	107.14	107.41	Max Pool
378.5	106.31	106.97		Glide
381.7	106.78	107.01		Riffle
391.7	106.52	106.97	107.16	Run
400.0	106.25		107.03	Pool
404.9	105.65	106.55		Max Pool
407.8	106.00	106.54	107.06	Glide
415.2	106.18	106.56	106.9	Riffle
430.8	105.87	106.08	106.57	Run
435.4	105.63		106.6	Pool
438.3	105.11	106.07	106.62	Max Pool
444.8	105.75	106.09	106.34	Riffle
468.4	105.12	105.2		Pool
472.5	104.21	105.15	105.95	Max Pool
476.8	104.53	105.14		Glide
482.7	104.86	105.22	105.5	Riffle
499.2	104.63	104.72		Run
503.8	104.07		104.65	Run
506.0	104.44	104.65		Riffle
513.6	104.29	104.49	104.93	Riffle
525.0	104.17	104.45	104.56	Run
534.1	103.89		104.26	Headcut
534.8	102.90		104.26	Headcut
540.8	102.13	103.18	104.2	Max Pool
545.3	102.88	103.2	104.2	Glide
555.4	103.18			CV
556.2	101.80	102.42	104.05	Max Pool
559.9	102.16	400.70	104.19	Glide
563.2	102.66	102.72	104.19	Riffle
576.1	101.86	102.02	103.66	Run
581.4	101.68	400	103.6	Run
584.3	101.62	102	103.6	Run
588.1	101.58		103.6	Run
592.4	101.32		103.57	Run
600.6	101.51	404.04	103.55	Run
607.9	101.43	101.94	100	Run
613.8	101.91	101.94	103	Run
624.6 636.0	101.46	101.9	102.77	Run Riffle
642.3	101.53	101 22	102.77	
660.2	100.52	101.33 101.35	102.34 102.31	Run
	100.81	101.33		Riffle
6+74.9 6+83.2	100.70 100.65	101.13	102.19	Riffle Run
6+85.5	100.50	100.93	102.77	Run
6+90.0	100.50	100.88	102.77	Pool
6+95.9	99.46	100.73	102.77	Max Pool
7+10.3	99.99	100.73	102.77	Glide
7+10.3 7+15.7	100.73	100.72	102.08	Riffle
7+13.7 7+24.6	100.73	100.73	102.08	Pool
7+24.0 7+27.2	99.30	100.3	102.06	Max Pool
7+27.2 7+32.4	100.13	100.27	102.3	Riffle
, 102.7	100.10	100.22	102.0	MINIO

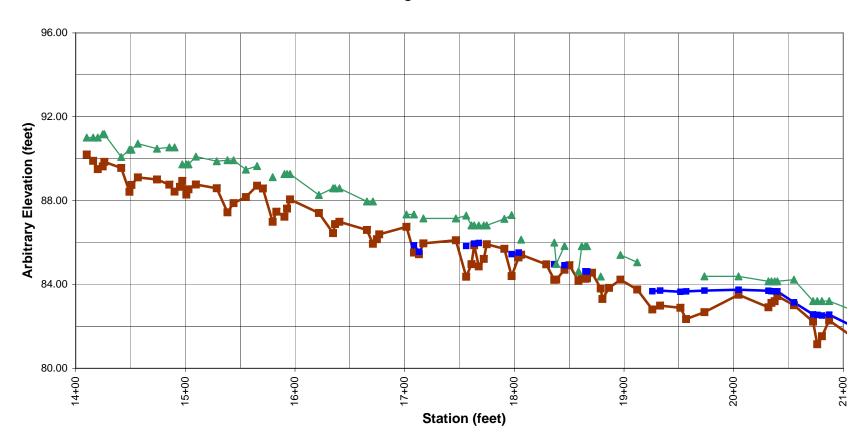

			.	
7+74.8	98.42	98.88		Pool
7+81.8	96.27	98.79	100.94	Max Pool
7+92.1	97.63	98.79		Glide
8+04.7	98.79	98.84	99.58	Riffle
8+20.7	98.43	98.56		Run
8+25.4	97.90	98.36	98.96	Run
8+35.2	98.01	98.29	98.89	Run
8+45.3	97.67	98.24	00.00	Run
8+50.4	97.78	98.24	99.19	Run
8+53.1	98.25	98.23	99.19	Riffle
8+58.3	97.84	00.20	99.18	Run
8+63.4	96.95		99.18	Max Pool
8+69.8	97.48	97.7	98.58	Glide
8+81.1	96.19	97.71	98.58	Max Pool
8+86.5	96.84	97.71	90.50	Glide
			00.5	
8+93.1	97.44	97.71	98.5	Pool Max Pool
9+05.7	96.61	97.64	00.00	
9+14.6	97.53	97.74	98.23	Riffle
9+31.1	96.56	97.08	98.18	Pool
9+34.7	95.84	97.14	98.18	Max Pool
9+38.5	96.06			Glide
9+43.2	96.90	97.02		Riffle
9+63.1	96.29	96.29		Pool
9+66.9	95.56	96.3	97.65	Max Pool
9+78.3	95.79	95.85	97.32	CV
9+82.2	95.54	95.87	97.32	
9+83.8	95.53	95.82	97.32	Pool
9+97.5	95.19	95.75	96.64	Pool
10+00.6	95.03	95.71	96.64	Max Pool
10+05.6	95.45	95.77	96.64	Pool
10+08.3	94.95	95.77	96.64	Pool
10+13.5	94.73	95.8	96.43	Max Pool
10+16.7	95.65	95.8	96.43	Riffle
10+28.2	95.55	95.81	96.45	Pool
10+34.3	94.71	95.76	96.45	Pool
10+37.0	94.93	95.74	96.45	CV
10+40.2	94.40	95.74	96.45	Max Pool
10+46.4	95.44			Glide/Xing
10+54.5	95.68	95.8		Riffle
10+68.0	95.28		95.99	Xing
10+70.5	95.13		95.99	Run
10+71.5	94.40		95.99	Pool
10+76.5	93.39		95.99	Max Pool
10+81.7	94.01	95.44		Glide
10+83.2	94.18	95.44		Riffle
11+11.6	93.77	94.04	95.47	Run
11+19.1	93.69	94.1	00.17	CV
11+24.9	93.10	93.87	95.09	Max Pool
11+29.3	93.26	93.87	95.09	
11+29.5	93.61	93.87	95.09	
11+31.8	92.87	93.73	95.09	
11+41.6				Max Pool
11+45.4	92.68	93.77	95.03	
	92.94	93.69		
11+53.5	93.24	93.7	94.78	
11+75.1	93.12	93.35	94.81	
11+96.9	92.15	93.13	94.8	Max Pool


		_	
12+08.4	93.02	93.02	94.04 CV
12+12.4	92.03	92.8	94.32 Max Pool
12+16.5	92.09	92.79	94.32 Glide
12+32.7	92.86	02.70	Riffle
		00.00	-
12+40.2	91.32	92.03	Pool
12+45.3	90.54	92.09	93.44 Max Pool
12+53.6	91.98	91.98	CV
12+60.0	90.26	91.97	Max Pool
12+63.6	90.65	92	93.67 Glide
12+75.2	91.98	02	Riffle
		04.05	_
12+90.6	91.67	91.35	92.26 CV
12+99.8	90.67		Pool
13+01.5	90.64	91.31	92.18 Max Pool
13+05.8	91.18		92.18 Riffle
13+16.0	91.08		93.44 CV
13+20.5	90.44	90.92	93.44 Pool
		90.95	
13+25.0	89.94		93.67 Max Pool
13+28.8	90.07	90.9	93.67 Glide
13+56.5	90.72	90.91	91.88 Riffle
13+69.1	90.47		91.67 Pool
13+75.6	89.69	90.47	91.46 Max Pool
13+80.6	89.92	90.39	91.46 Glide
13+87.9		30.33	91.77 Riffle
	90.44		-
14+10.1	90.20		91.01 CV
14+15.9	89.90		91.01 Pool
14+20.2	89.50		91.01 Max Pool
14+24.6	89.63		91.17 Glide
14+26.1	89.85		91.17 Riffle
14+41.5	89.56		90.08 Pool
14+49.0	88.42		90.43 Max Pool
14+50.8	88.75		90.43 Glide
14+56.7	89.11		90.72 Riffle
14+74.1	89.01		90.48 Run
14+85.4	88.76		90.54 Pool
14+90.2	88.43		90.54 Max Pool
14+95.1	88.66		Glide
14+97.2	88.94		89.73 CV
15+00.9	88.29		89.73 Max Pool
15+02.9	88.54		89.73 Glide
15+09.6	88.77		90.1 Riffle
15+28.6	88.59		89.88 Pool
15+38.4	87.44		89.93 Max Pool
15+43.9			89.93 Glide
	87.88		
15+55.1	88.17		89.48 Glide
15+65.4	88.71		89.65 Riffle
15+70.7	88.58		Pool
15+79.6	86.99		89.12 Max Pool
15+83.0	87.47		CV
15+90.4	87.23		89.27 Pool
15+92.7	87.62		89.27 Glide
15+95.5	88.06		89.27 Riffle
16+21.8	87.41		88.27 Pool
16+34.7	86.45		88.59 Max Pool
16+36.6	86.88		88.59 Glide
16+40.5	86.99		88.59 Riffle
16+65.6	86.60		87.96 CV
10703.0	00.00		07.30 07

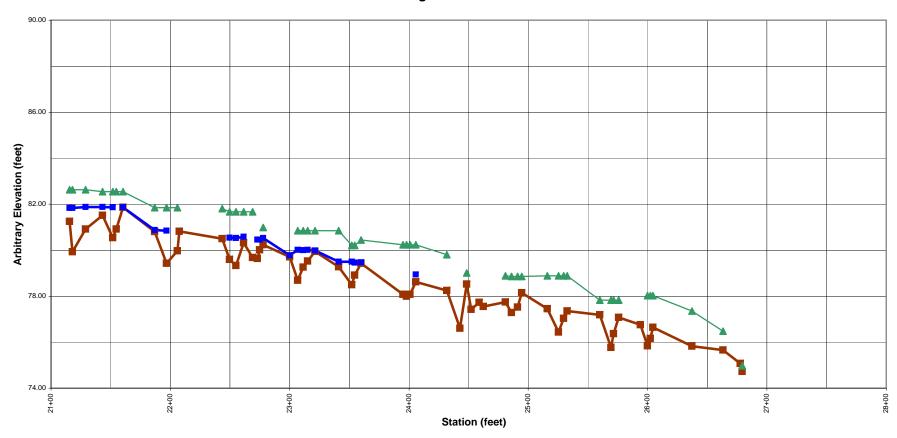

		_		
16+71.0	85.94		87.96	Max Pool
16+74.6	86.16			Glide
16+76.8	86.39			Glide
17+01.6	86.75		87.34	Pool
17+08.5	85.52	85.87	87.34	Max Pool
17+13.1	85.44	85.56		
17+17.1	85.96		87.15	Riffle
17+46.7	86.11		87.15	Pool
17+56.1	84.37	85.84	87.29	Max Pool
17+60.9	84.97			Glide
17+63.4	85.87	85.95	86.82	
17+67.6	84.86	85.98		Max Pool
17+72.1	85.22			Glide
17+74.8	85.92		86.82	
17+90.9	85.70		87.13	
17+97.6	84.40	85.45	87.31	Max Pool
18+03.9	85.29	85.52		Glide
18+06.2	85.42		86.14	Riffle
18+29.1	84.96	0.4.0=		Pool
18+36.4	84.22	84.97		Max Pool
18+38.3	84.23	0.4.00	84.98	
18+45.8	84.70	84.92	85.84	
18+50.2	84.92		04.00	CV
18+58.5	84.18			Max Pool
18+61.5	84.31	0.4.00	85.83	
18+64.9	84.27	84.63	85.83	
18+66.3	84.30	84.62	85.83	
18+70.9	84.56		04.00	Riffle
18+78.8	83.81		84.38	Riffle
18+80.3	83.31			Max Pool/Culvert Glide
18+86.4	83.84		85.41	
18+96.8 19+12.1	84.23 83.76		85.06	_
19+12.1	82.81	83.68	65.00	Run
19+23.9	82.99	83.71		Run
19+51.5	82.89	83.65		
19+56.6		00.00		Pool
19+73.4		83 67		Pool Max Pool
20+04.4	82.35 82.68	83.67 83.71	84 30	Max Pool
	82.68	83.71		Max Pool Glide
20+31 /	82.68 83.51	83.71 83.75	84.39	Max Pool Glide Run
20+31.7 20+34.5	82.68 83.51 82.91	83.71 83.75 83.7	84.39 84.15	Max Pool Glide Run Run
20+34.5	82.68 83.51 82.91 83.12	83.71 83.75 83.7 83.68	84.39 84.15 84.15	Max Pool Glide Run Run Xing
20+34.5 20+37.4	82.68 83.51 82.91 83.12 83.20	83.71 83.75 83.7 83.68 83.67	84.39 84.15 84.15 84.15	Max Pool Glide Run Run Xing Run
20+34.5 20+37.4 20+39.9	82.68 83.51 82.91 83.12 83.20 83.45	83.71 83.75 83.7 83.68 83.67 83.67	84.39 84.15 84.15 84.15 84.15	Max Pool Glide Run Run Xing Run Riffle
20+34.5 20+37.4 20+39.9 20+55.0	82.68 83.51 82.91 83.12 83.20 83.45 83.01	83.71 83.75 83.7 83.68 83.67 83.67 83.15	84.39 84.15 84.15 84.15 84.23	Max Pool Glide Run Run Xing Run Riffle Run/Fence
20+34.5 20+37.4 20+39.9 20+55.0 20+72.4	82.68 83.51 82.91 83.12 83.20 83.45 83.01 82.23	83.71 83.75 83.7 83.68 83.67 83.67 83.15 82.57	84.39 84.15 84.15 84.15 84.23 83.21	Max Pool Glide Run Run Xing Run Riffle Run/Fence Pool
20+34.5 20+37.4 20+39.9 20+55.0 20+72.4 20+76.3	82.68 83.51 82.91 83.12 83.20 83.45 83.01 82.23 81.15	83.71 83.75 83.7 83.68 83.67 83.67 83.15 82.57 82.55	84.39 84.15 84.15 84.15 84.23 83.21 83.21	Max Pool Glide Run Run Xing Run Riffle Run/Fence Pool Max Pool
20+34.5 20+37.4 20+39.9 20+55.0 20+72.4 20+76.3 20+80.6	82.68 83.51 82.91 83.12 83.20 83.45 83.01 82.23 81.15 81.53	83.71 83.75 83.7 83.68 83.67 83.67 83.15 82.57 82.55 82.55	84.39 84.15 84.15 84.15 84.23 83.21 83.21 83.21	Max Pool Glide Run Run Xing Run Riffle Run/Fence Pool Max Pool Glide
20+34.5 20+37.4 20+39.9 20+55.0 20+72.4 20+76.3 20+80.6 20+87.1	82.68 83.51 82.91 83.12 83.20 83.45 83.01 82.23 81.15 81.53 82.28	83.71 83.75 83.7 83.68 83.67 83.67 83.15 82.57 82.55 82.52 82.56	84.39 84.15 84.15 84.15 84.23 83.21 83.21 83.21 83.21	Max Pool Glide Run Run Xing Run Riffle Run/Fence Pool Max Pool Glide Riffle
20+34.5 20+37.4 20+39.9 20+55.0 20+72.4 20+76.3 20+80.6 20+87.1 21+15.5	82.68 83.51 82.91 83.12 83.20 83.45 83.01 82.23 81.15 81.53 82.28 81.25	83.71 83.75 83.7 83.68 83.67 83.67 83.15 82.57 82.55 82.52 82.56 81.83	84.39 84.15 84.15 84.15 84.23 83.21 83.21 83.21 83.21 82.63	Max Pool Glide Run Run Xing Run Riffle Run/Fence Pool Max Pool Glide Riffle
20+34.5 20+37.4 20+39.9 20+55.0 20+72.4 20+76.3 20+80.6 20+87.1	82.68 83.51 82.91 83.12 83.20 83.45 83.01 82.23 81.15 81.53 82.28	83.71 83.75 83.7 83.68 83.67 83.67 83.15 82.57 82.55 82.52 82.56	84.39 84.15 84.15 84.15 84.23 83.21 83.21 83.21 83.21 82.63 82.63	Max Pool Glide Run Run Xing Run Riffle Run/Fence Pool Max Pool Glide Riffle Pool
20+34.5 20+37.4 20+39.9 20+55.0 20+72.4 20+76.3 20+80.6 20+87.1 21+15.5 21+18.1	82.68 83.51 82.91 83.12 83.20 83.45 83.01 82.23 81.15 81.53 82.28 81.25 79.93	83.71 83.75 83.7 83.68 83.67 83.67 83.15 82.57 82.55 82.55 82.56 81.83 81.83	84.39 84.15 84.15 84.15 84.23 83.21 83.21 83.21 83.21 82.63 82.63	Max Pool Glide Run Run Xing Run Riffle Run/Fence Pool Max Pool Glide Riffle Pool Max Pool Glide Riffle Glide Riffle Glide Riffle Riffle Rool Max Pool Glide
20+34.5 20+37.4 20+39.9 20+55.0 20+72.4 20+76.3 20+80.6 20+87.1 21+15.5 21+18.1 21+29.0	82.68 83.51 82.91 83.12 83.20 83.45 83.01 82.23 81.15 81.53 82.28 81.25 79.93 80.91	83.71 83.75 83.68 83.67 83.67 83.15 82.57 82.55 82.52 82.56 81.83 81.83 81.88	84.39 84.15 84.15 84.15 84.23 83.21 83.21 83.21 82.63 82.63 82.63	Max Pool Glide Run Run Xing Run Riffle Run/Fence Pool Max Pool Glide Riffle Pool Max Pool Glide Riffle Glide Riffle Glide Riffle Riffle Rool Max Pool Glide
20+34.5 20+37.4 20+39.9 20+55.0 20+72.4 20+76.3 20+80.6 20+87.1 21+15.5 21+18.1 21+29.0 21+43.3	82.68 83.51 82.91 83.12 83.20 83.45 83.01 82.23 81.15 81.53 82.28 81.25 79.93 80.91 81.52	83.71 83.75 83.7 83.68 83.67 83.67 83.15 82.57 82.55 82.52 82.56 81.83 81.83 81.88	84.39 84.15 84.15 84.15 84.23 83.21 83.21 83.21 82.63 82.63 82.63 82.54	Max Pool Glide Run Run Xing Run Riffle Run/Fence Pool Max Pool Glide Riffle Pool Max Pool Glide CV
20+34.5 20+37.4 20+39.9 20+55.0 20+72.4 20+76.3 20+80.6 20+87.1 21+15.5 21+18.1 21+29.0 21+43.3 21+51.8	82.68 83.51 82.91 83.12 83.20 83.45 83.01 82.23 81.15 81.53 82.28 81.25 79.93 80.91 81.52 80.54	83.71 83.75 83.7 83.68 83.67 83.67 83.15 82.57 82.55 82.52 82.56 81.83 81.83 81.88	84.39 84.15 84.15 84.15 84.23 83.21 83.21 83.21 82.63 82.63 82.63 82.54	Max Pool Glide Run Run Xing Run Riffle Run/Fence Pool Max Pool Glide Riffle Pool Max Pool Glide CV Max Pool Glide
20+34.5 20+37.4 20+39.9 20+55.0 20+72.4 20+76.3 20+80.6 20+87.1 21+15.5 21+18.1 21+29.0 21+43.3 21+51.8 21+54.7	82.68 83.51 82.91 83.12 83.20 83.45 83.01 82.23 81.15 81.53 82.28 81.25 79.93 80.91 81.52 80.54 80.91	83.71 83.75 83.7 83.68 83.67 83.67 83.15 82.57 82.55 82.52 82.56 81.83 81.83 81.88 81.87 81.86	84.39 84.15 84.15 84.15 84.23 83.21 83.21 83.21 82.63 82.63 82.63 82.54 82.54	Max Pool Glide Run Run Xing Run Riffle Run/Fence Pool Max Pool Glide Riffle Pool Max Pool Glide CV Max Pool Glide CV Mix Pool Glide Riffle Riffle

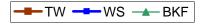
21+96.9	79.42	80.84	81.85 Max Pool
22+06.1	79.97		81.85 Glide
22+07.5	80.82		Riffle
22+43.6	80.50		81.81 Pool
22+49.7	79.59	80.54	81.67 Pool
22+55.1	79.33	80.53	81.67 Max Pool
22+61.4	80.32	80.58	81.67 Pool
22+69.0	79.68		81.67 CV
22+72.9	79.64	80.45	Max Pool
22+74.9	80.01	80.45	Glide
22+77.8	80.23	80.53	80.98 Riffle
23+00.2	79.71	79.78	Pool
23+06.8	78.69	80.01	80.84 Max Pool
23+11.2	79.26	79.99	80.84 Glide
23+15.2	79.53	80.01	80.84 Glide
23+21.3	79.94	79.98	80.84 Riffle/XSC
23+41.2	79.27	79.5	80.84 Pool
23+52.0	78.50	79.5	80.2 Max Pool
23+54.5	78.91	79.45	80.21 Glide
23+59.8	79.42	79.47	80.44 Riffle
23+95.1	78.07		80.24 Run
23+98.1	78.00		80.24 Run
24+01.0	78.08		80.24 Run
24+05.9	78.62	78.94	80.24 Riffle
24+31.7	78.25		79.8 Pool
24+42.7	76.60		Max Pool
24+48.4	78.52		79.01 CV
24+52.1	77.42		Run
24+58.7	77.73		Run
24+62.3	77.55		Run
24+80.9	77.74		78.88 Run
24+86.0	77.28		78.86 Run
24+91.1	77.52		78.86 Run
24+94.6	78.14		78.86 Riffle
25+16.0	77.45		78.89 Pool
25+25.3	76.43		78.89 Max Pool
25+29.7	77.03		78.89 Glide
25+32.7	77.36		78.89 Riffle
25+60.1	77.18		77.82 Pool
25+69.3	75.77		77.82 Max Pool
25+71.6	76.36		77.82 Glide
25+75.7	77.07		77.82 Riffle
2594.09	76.75		Pool
25+99.8	75.83		78.02 Max Pool
26+02.3	76.16		78.02 Glide
26+04.5	76.65		78.02 Riffle
26+37.3	75.82		77.36 Riffle
26+63.1	75.65		76.48 Riffle
26+77.8	75.05 75.07		Riffle
26+77.8	74.73		74.98 Culvert
20713.2	14.13		14.30 Cuiveit

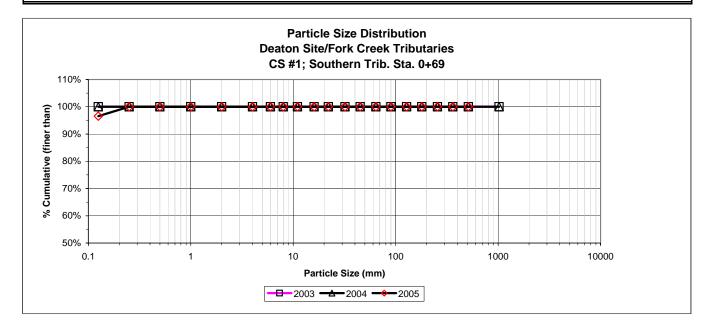


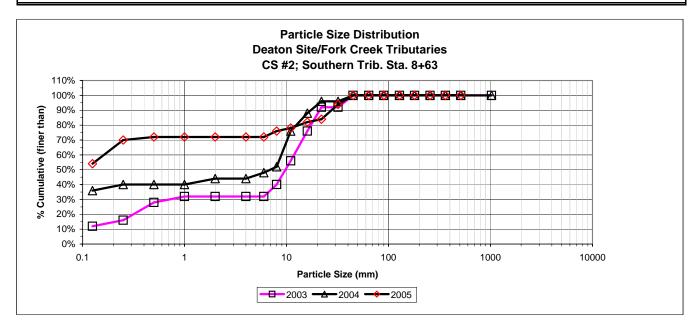


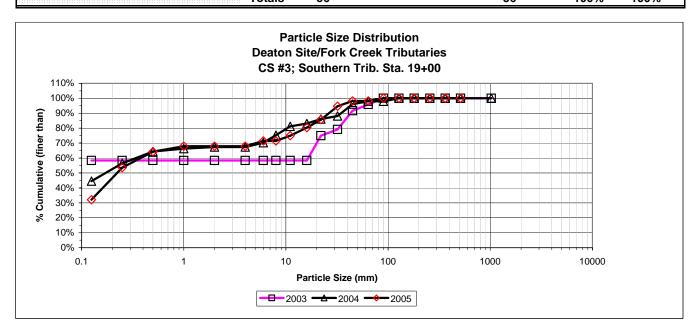


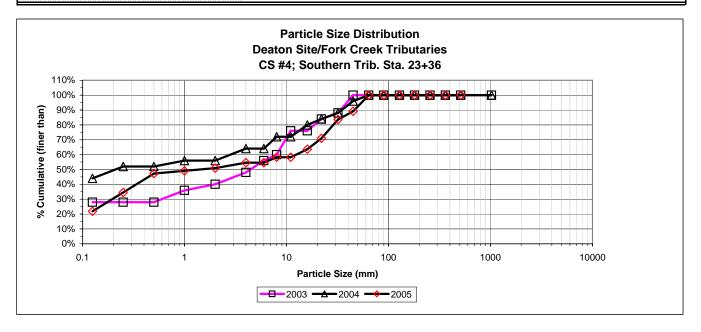


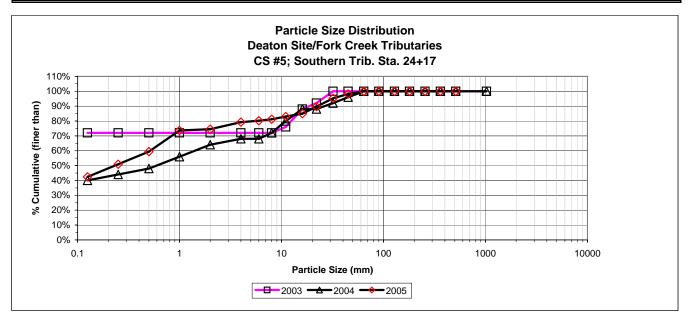


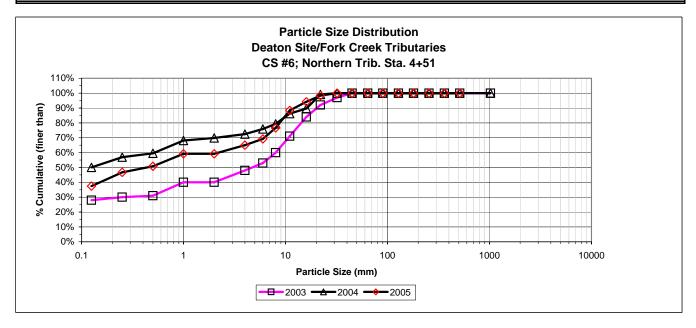


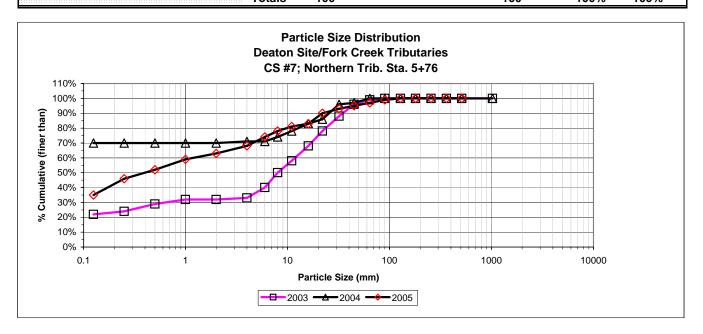


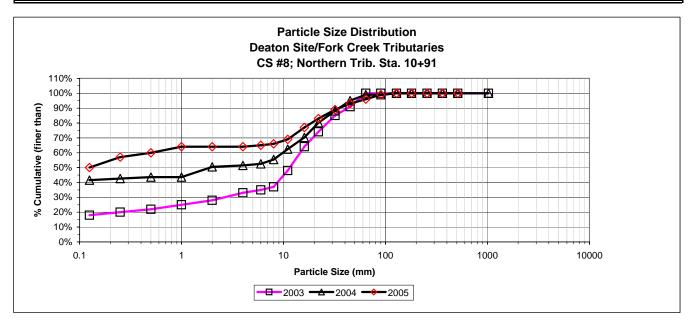

				PEBBLE	COUNT				
Site: Deaton	Farm/Fork Cree	k		1 LDDLL	000111		11/15/2005		
	Patterson, Chad I		de Patton				CS#1 (Southe		a. 0+69)
				F	Particle Cour	nt			•
Inches	Particle	Millimeter		Pool			Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	50			50	86%	86%
	Very Fine	.062125	S	6			6	10%	97%
	Fine	.12525	Α	2			2	3%	100%
	Medium	.2550	N	0			0	0%	100%
	Coarse	.50 - 1.0	D	0			0	0%	100%
.0408	Very Coarse	1.0 - 2.0	S	0			0	0%	100%
.0816	Very Fine	2.0 - 4.0		0			0	0%	100%
.1622	Fine	4.0 - 5.7	G	0			0	0%	100%
.2231	Fine	5.7 - 8.0	R	0			0	0%	100%
.3144	Medium	8.0 - 11.3	Α	0			0	0%	100%
.4463	Medium	11.3 - 16.0	٧	0			0	0%	100%
.6389	Coarse	16.0 - 22.6	Е	0			0	0%	100%
.89 - 1.26	Coarse	22.6 - 32.0	L	0			0	0%	100%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	0			0	0%	100%
1.77 - 2.5	Very Coarse	45.0 - 64.0		0			0	0%	100%
2.5 - 3.5	Small	64 - 90	С	0			0	0%	100%
3.5 - 5.0	Small	90 - 128	0	0			0	0%	100%
5.0 - 7.1	Large	128 - 180	В	0			0	0%	100%
7.1 - 10.1	Large	180 - 256	L	0			0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0			0	0%	100%
14.3 - 20	Small	362 - 512	L	0			0	0%	100%
20 - 40	Medium	512 - 1024	D	0			0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0			0	0%	100%
	Bedrock		BDRK	0			0	0%	100%
			Totals	58			58	100%	100%


				PEBBLE	COUNT				
Site: Deaton	Farm/Fork Cree	k					11/15/2005		
Party: Jan F	Party: Jan Patterson, Chad Holland, & Wade Patton							ern Trib. Sta	a. 8+63)
Particle Count									
Inches	Particle	Millimeter		Riffle			Total No.	Item %	% Cumulative
< 0.062	Silt/Clay	< 0.062	S/C	19			19	38%	38%
.062125	Very Fine	.062125	S	8			8	16%	54%
.12525	Fine	.12525	Α	8			8	16%	70%
.2550	Medium	.2550	N	1			1	2%	72%
.50 - 1.0	Coarse	.50 - 1.0	D	0			0	0%	72%
.0408	Very Coarse	1.0 - 2.0	S	0			0	0%	72%
.0816	Very Fine	2.0 - 4.0		0			0	0%	72%
.1622	Fine	4.0 - 5.7	G	0			0	0%	72%
.2231	Fine	5.7 - 8.0	R	2			2	4%	76%
.3144	Medium	8.0 - 11.3	Α	1			1	2%	78%
.4463	Medium	11.3 - 16.0	٧	2			2	4%	82%
.6389	Coarse	16.0 - 22.6	Е	1			1	2%	84%
.89 - 1.26	Coarse	22.6 - 32.0	L	5			5	10%	94%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	3			3	6%	100%
1.77 - 2.5	Very Coarse	45.0 - 64.0		0			0	0%	100%
2.5 - 3.5	Small	64 - 90	С	0			0	0%	100%
3.5 - 5.0	Small	90 - 128	0	0			0	0%	100%
5.0 - 7.1	Large	128 - 180	В	0			0	0%	100%
7.1 - 10.1	Large	180 - 256	L	0			0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0			0	0%	100%
14.3 - 20	Small	362 - 512	L	0			0	0%	100%
20 - 40	Medium	512 - 1024	D	0			0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0			0	0%	100%
	Bedrock		BDRK	0			0	0%	100%
			Totals	50		·	50	100%	100%

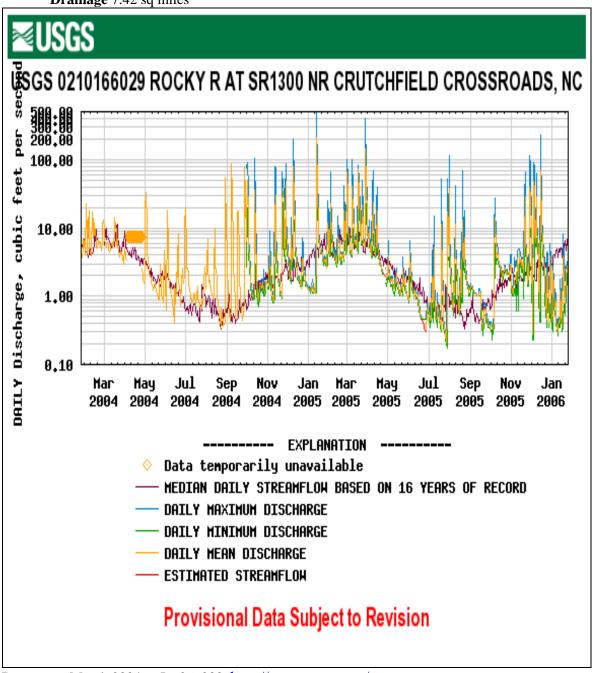

				PEBBLE	COUNT			
Site: Deaton	Farm/Fork Cree	k			-	11/15/2005		
Party: Jan F	Patterson, Chad I	Holland, & Wa	de Patton			CS#3 (Southe	ern Trib. Sta	a. 19+00)
					article Count			
Inches	Particle	Millimeter		Riffle/Glide		Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	7		7	13%	13%
	Very Fine	.062125	S	11		11	20%	32%
	Fine	.12525	Α	12		12	21%	54%
	Medium	.2550	N	6		6	11%	64%
	Coarse	.50 - 1.0	D	2		2	4%	68%
.0408	Very Coarse	1.0 - 2.0	S	0		0	0%	68%
.0816	Very Fine	2.0 - 4.0		0		0	0%	68%
.1622	Fine	4.0 - 5.7	G	2		2	4%	71%
.2231	Fine	5.7 - 8.0	R	0		0	0%	71%
.3144	Medium	8.0 - 11.3	Α	2		2	4%	75%
.4463	Medium	11.3 - 16.0	٧	3		3	5%	80%
.6389	Coarse	16.0 - 22.6	E	3		3	5%	86%
.89 - 1.26	Coarse	22.6 - 32.0	L	5		5	9%	95%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	2		2	4%	98%
1.77 - 2.5	Very Coarse	45.0 - 64.0		0		0	0%	98%
2.5 - 3.5	Small	64 - 90	С	1		1	2%	100%
3.5 - 5.0	Small	90 - 128	0	0		0	0%	100%
5.0 - 7.1	Large	128 - 180	В	0		0	0%	100%
7.1 - 10.1	Large	180 - 256	L	0		0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0		 0	0%	100%
14.3 - 20	Small	362 - 512	L	0		0	0%	100%
20 - 40	Medium	512 - 1024	D	0		0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0		 0	0%	100%
	Bedrock		BDRK	0		 0	0%	100%
			Totals	56		56	100%	100%


PEBBLE COUNT										
Site: Deaton	Farm/Fork Cree	k					11/15/2005			
Party: Jan Patterson, Chad Holland, & Wade Patton								CS#4 (Southern Trib. Sta. 23+36)		
Particle Count										
Inches	Particle	Millimeter		Riffle			Total No.	Item %	% Cumulative	
	Silt/Clay	< 0.062	S/C	2			2	4%	4%	
	Very Fine	.062125	S	10			10	18%	22%	
	Fine	.12525	Α	7			7	13%	35%	
	Medium	.2550	N	7			7	13%	47%	
	Coarse	.50 - 1.0	D	1			1	2%	49%	
.0408	Very Coarse	1.0 - 2.0	S	1			1	2%	51%	
.0816	Very Fine	2.0 - 4.0		2			2	4%	55%	
.1622	Fine	4.0 - 5.7	G	0			0	0%	55%	
.2231	Fine	5.7 - 8.0	R	2			2	4%	58%	
.3144	Medium	8.0 - 11.3	Α	0			0	0%	58%	
.4463	Medium	11.3 - 16.0	V	3			3	5%	64%	
.6389	Coarse	16.0 - 22.6	E	4			4	7%	71%	
.89 - 1.26	Coarse	22.6 - 32.0	L	7			7	13%	84%	
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	3			3	5%	89%	
1.77 - 2.5	Very Coarse	45.0 - 64.0		6			6	11%	100%	
2.5 - 3.5	Small	64 - 90	С	0			0	0%	100%	
3.5 - 5.0	Small	90 - 128	0	0			0	0%	100%	
5.0 - 7.1	Large	128 - 180	В	0			0	0%	100%	
7.1 - 10.1	Large	180 - 256	L	0			0	0%	100%	
10.1 - 14.3	Small	256 - 362	В	0		-	0	0%	100%	
14.3 - 20	Small	362 - 512	L	0			0	0%	100%	
20 - 40	Medium	512 - 1024	D	0			0	0%	100%	
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0			0	0%	100%	
	Bedrock		BDRK	0			0	0%	100%	
			Totals	55			55	100%	100%	


				PEBBLE	COUNT				
	Site: Deaton Farm/Fork Creek								
							CS#5 (Southern Trib. Sta. 24+17)		
					Particle Cour	nt	_		
Inches	Particle	Millimeter		Pool			Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	34			34	32%	32%
	Very Fine	.062125	S	11			11	10%	42%
	Fine	.12525	Α	9			9	8%	51%
	Medium	.2550	N	9			9	8%	59%
	Coarse	.50 - 1.0	D	15			15	14%	74%
.0408	Very Coarse	1.0 - 2.0	S	1			1	1%	75%
.0816	Very Fine	2.0 - 4.0		5			5	5%	79%
.1622	Fine	4.0 - 5.7	G	1			1	1%	80%
.2231	Fine	5.7 - 8.0	R	1			1	1%	81%
.3144	Medium	8.0 - 11.3	Α	2			2	2%	83%
.4463	Medium	11.3 - 16.0	٧	2			2	2%	85%
.6389	Coarse	16.0 - 22.6	E	5			5	5%	90%
.89 - 1.26	Coarse	22.6 - 32.0	L	6			6	6%	95%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	3			3	3%	98%
1.77 - 2.5	Very Coarse	45.0 - 64.0		2			2	2%	100%
2.5 - 3.5	Small	64 - 90	С	0			0	0%	100%
3.5 - 5.0	Small	90 - 128	0	0			0	0%	100%
5.0 - 7.1	Large	128 - 180	В	0			0	0%	100%
7.1 - 10.1	Large	180 - 256	L	0			0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0			0	0%	100%
14.3 - 20	Small	362 - 512	L	0			0	0%	100%
20 - 40	Medium	512 - 1024	D	0			0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0			0	0%	100%
	Bedrock		BDRK	0		·	0	0%	100%
			Totals	106			106	100%	100%


				PEBBLE	COUNT				
Site: Deaton	Farm/Fork Cree	k					11/7/05/2005		
Party: Jan F	Patterson, Chad I	Holland, & Wa	de Patton	1			CS#6 (Northern Trib, Sta. 4+51)		
		nt							
Inches	Particle	Millimeter		Pool			Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	32			32	27%	27%
	Very Fine	.062125	S	13			13	11%	38%
	Fine	.12525	Α	11			11	9%	47%
	Medium	.2550	N	5			5	4%	51%
	Coarse	.50 - 1.0	D	10			10	8%	59%
.0408	Very Coarse	1.0 - 2.0	S	0			0	0%	59%
.0816	Very Fine	2.0 - 4.0		7			7	6%	65%
.1622	Fine	4.0 - 5.7	G	5			5	4%	69%
.2231	Fine	5.7 - 8.0	R	9			9	8%	77%
.3144	Medium	8.0 - 11.3	Α	14			14	12%	88%
.4463	Medium	11.3 - 16.0	٧	7			7	6%	94%
.6389	Coarse	16.0 - 22.6	Е	5			5	4%	98%
.89 - 1.26	Coarse	22.6 - 32.0	L	2			2	2%	100%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	0			0	0%	100%
1.77 - 2.5	Very Coarse	45.0 - 64.0		0			0	0%	100%
2.5 - 3.5	Small	64 - 90	С	0			0	0%	100%
3.5 - 5.0	Small	90 - 128	0	0			0	0%	100%
5.0 - 7.1	Large	128 - 180	В	0			0	0%	100%
7.1 - 10.1	Large	180 - 256	L	0			0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0			0	0%	100%
14.3 - 20	Small	362 - 512	L	0			0	0%	100%
20 - 40	Medium	512 - 1024	D	0			0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0			0	0%	100%
	Bedrock		BDRK	0			0	0%	100%
			Totals	120			120	100%	100%

PEBBLE COUNT										
Site: Deator	Farm/Fork Cree	k				11/7/2005	11/7/2005			
Party: Jan F	Patterson, Chad I	Holland, & Wa	de Patton			CS#7 (Northe	CS#7 (Northern Trib. Sta. 5+76)			
Particle Count										
Inches	Particle	Millimeter		Riffle		Total No.	Item %	% Cumulative		
	Silt/Clay	< 0.062	S/C	17		17	17%	17%		
	Very Fine	.062125	S	18		18	18%	35%		
	Fine	.12525	Α	11		11	11%	46%		
	Medium	.2550	N	6		6	6%	52%		
	Coarse	.50 - 1.0	D	7		7	7%	59%		
.0408	Very Coarse	1.0 - 2.0	S	4		4	4%	63%		
.0816	Very Fine	2.0 - 4.0		5		5	5%	68%		
.1622	Fine	4.0 - 5.7	G	6		6	6%	74%		
.2231	Fine	5.7 - 8.0	R	4		4	4%	78%		
.3144	Medium	8.0 - 11.3	Α	3		3	3%	81%		
.4463	Medium	11.3 - 16.0	٧	2		2	2%	83%		
.6389	Coarse	16.0 - 22.6	E	7		7	7%	90%		
.89 - 1.26	Coarse	22.6 - 32.0	L	3		3	3%	93%		
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	2		2	2%	95%		
1.77 - 2.5	Very Coarse	45.0 - 64.0		2		2	2%	97%		
2.5 - 3.5	Small	64 - 90	С	2		2	2%	99%		
3.5 - 5.0	Small	90 - 128	0	1		1	1%	100%		
5.0 - 7.1	Large	128 - 180	В	0		0	0%	100%		
7.1 - 10.1	Large	180 - 256	L	0		0	0%	100%		
10.1 - 14.3	Small	256 - 362	В	0		0	0%	100%		
14.3 - 20	Small	362 - 512	L	0		0	0%	100%		
20 - 40	Medium	512 - 1024	D	0		0	0%	100%		
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0		0	0%	100%		
	Bedrock		BDRK	0		0	0%	100%		
			Totals	100		100	100%	100%		


				PEBBLE	COUNT					
Site: Deaton Farm/Fork Creek								11/7/2005		
Party: Jan Patterson, Chad Holland, & Wade Patton								CS#8 (Northern Trib. Sta. 10+91)		
Particle Count										
Inches	Particle	Millimeter		Riffle			Total No.	Item %	% Cumulative	
	Silt/Clay	< 0.062	S/C	44			44	44%	44%	
	Very Fine	.062125	S	6			6	6%	50%	
	Fine	.12525	Α	7			7	7%	57%	
	Medium	.2550	N	3			3	3%	60%	
	Coarse	.50 - 1.0	D	4			4	4%	64%	
.0408	Very Coarse	1.0 - 2.0	S	0			0	0%	64%	
.0816	Very Fine	2.0 - 4.0		0			0	0%	64%	
.1622	Fine	4.0 - 5.7	G	1			1	1%	65%	
.2231	Fine	5.7 - 8.0	R	1			1	1%	66%	
.3144	Medium	8.0 - 11.3	Α	3			3	3%	69%	
.4463	Medium	11.3 - 16.0	٧	8			8	8%	77%	
.6389	Coarse	16.0 - 22.6	E	6			6	6%	83%	
.89 - 1.26	Coarse	22.6 - 32.0	L	6			6	6%	89%	
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	4			4	4%	93%	
1.77 - 2.5	Very Coarse	45.0 - 64.0		3			3	3%	96%	
2.5 - 3.5	Small	64 - 90	C	3			3	3%	99%	
3.5 - 5.0	Small	90 - 128	0	1			1	1%	100%	
5.0 - 7.1	Large	128 - 180	В	0			0	0%	100%	
7.1 - 10.1	Large	180 - 256	L	0			0	0%	100%	
10.1 - 14.3	Small	256 - 362	В	0			0	0%	100%	
14.3 - 20	Small	362 - 512	L	0			0	0%	100%	
20 - 40	Medium	512 - 1024	D	0			0	0%	100%	
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0			0	0%	100%	
	Bedrock		BDRK	0			0	0%	100%	
			Totals	100			100	100%	100%	

USGS ROCKY RIVER AT SR1300 NR CRUTCHFIELD CROSSROADS, NC

Site Number 0210166029

HUC 03030003 Latitude 35°48'25" Longitude 79°31'39" Altitude 620 feet Drainage 7.42 sq miles

Data spans March 2004 to Jan26, 2006http://water.usgs.gov/

Two dates, one in January and one in March, show daily maximum discharge equal to or greater than 400 cfs. Downloaded 01-20-02.